• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Síntese enzimática do biodiesel de Jatropha curcas pela rota etílica / Enzymatic synthesis of Jatropha curcas biodiesel by ethylic route

Souza, Lívia Tereza de Andrade 01 October 2010 (has links)
O esperado crescimento na demanda de biodiesel no mercado mundial tem impulsionado uma evolução constante em seu sistema de produção de forma a torná-lo mais eficiente e ambientalmente favorável. O presente trabalho teve como objetivo verificar o potencial do óleo de pinhão manso para obtenção de biodiesel pela via enzimática empregando etanol com agente acilante. Para alcançar o objetivo proposto, as atividades experimentais foram iniciadas pela adequação do óleo de pinhão manso bruto para sua utilização como matériaprima na reação de transesterificação, incluindo as etapas de degomagem, neutralização e secagem. O óleo tratado, após caracterização físico-química, foi utilizado nos testes de triagem do biocatalisador enzimático testando diferentes preparações de lipases (EC 3.1.1.3) tanto na forma livre como imobilizada em SiO2-PVA, para mediar à síntese de biodiesel em meio isento de solventes. Os testes indicaram que as lipases na forma imobilizada foram mais eficientes e permitiram selecionar os derivados imobilizados das lipases de Burkholderia cepacia e Pseudomonas fluorescens como as preparações mais adequadas para catalisar a síntese de biodiesel a partir do óleo de pinhão, com rendimentos reacionais de 93,18% e 85,67%, respectivamente. Na segunda etapa do trabalho, os derivados imobilizados selecionados foram testados na reação de interesse, mantendo-se fixa as condições reacionais (temperatura 45oC, 1:9 de razão molar óleo/etanol e 500 unidades de atividade lipolítica por grama de óleo), empregando reatores de vidro acoplados com condensador de refluxo, para evitar perda de etanol. O monitoramento da reação foi efetuado pela determinação dos ésteres etílicos formados (Cromatografia de fase gasosa) e viscosidade cinemática em amostras retiradas ao longo da reação. O produto transesterificado (biodiesel) foi purificado e submetido às análises para caracterização de suas propriedades físico-químicas, incluindo estudo reológico, espectroscopia de absorção na região do infravermelho (FTIR), análise termogravimétrica (TG) e ressonância magnética nuclear protônica (1H-RMN). Os resultados obtidos permitiram confirmar que a lipase de Burkholderia cepacia foi a preparação de lipase mais eficiente para mediar à síntese do biodiesel do óleo de pinhão manso, alcançando rendimento de transesterificação superior a 97% (72h). O biodiesel produzido manteve-se estável termicamente até 128oC e não sendo constatada contaminação do produto com glicerol ou água residual, assegurando a eficiência da etapa de purificação do produto transesterificado. Experimentos adicionais foram ainda efetuados sob irradiação de micro-ondas e os resultados obtidos indicaram que o aquecimento por micro-ondas constitui um procedimento potencial para a produção de biodiesel, tendo em vista a considerável redução do tempo global de reação. A estabilidade operacional da lipase imobilizada foi determinada em bateladas consecutivas sob aquecimento convencional e irradiação de micro-ondas, revelando um tempo de meia-vida do biocatalisador de 110 e 26,5h, respectivamente. A real contribuição da aceleração da reação por meio de irradiação de micro-ondas deverá ser reavaliada levando em consideração a acentuada perda da atividade sintética do biocatalisador. / The expected increase in the biodiesel demand worldwide has brought a constant evolution in its production system in order to make it more efficient and environmentally favorable. The objective of present work was to verify the potential of Jatropha oil as raw material to produce biodiesel by enzymatic route using ethanol as acilant agent. To attain the proposed objective, the experimental activities were starting by treating the oil to attain suitable properties to be used in the transesterification reaction, including the degumming, neutralization and drying steps. The treated oil, after physico-chemical characterization was used to carry out a screening test to select the most suitable biocatalyst by means of testing different preparations of lipases (EC 3.1.1.3) in free form as well as immobilized in SiO2-PVA, to mediate the biodiesel synthesis in solvent free system. The assays indicated that the immobilized lipases were more efficient than free ones and allowed selecting the immobilized derivatives from Burkholderia cepacia and Pseudomonas fluorescens as the most suitable preparations to catalyze biodiesel synthesis from Jatropha oil, attaining yields of 93.18% and 85.67%, respectively. In the second step, the selected immobilized derivatives were used to catalyze the reaction of interest maintaining the previous set conditions (temperature 45oC, 1:9 molar ratio oil/ethanol and 500 units of lipolytic activity per gram of oil) using a glass reactor coupled with condenser to avoid ethanol loss. The reaction was monitored by determining the formed ethyl esters by gas chromatography and viscosity in samples taken from the reactor during the reaction. The transesterified product (biodiesel) was purified and submitted to further analyses for physico-chemical properties, including rheological study, FTIR, TG and 1H NMR. The obtained results confirmed that the lipase from Burkholderia cepacia was the most efficient biocatalyst to mediate the biodiesel synthesis from Jatropha oil, attaining transesterification yields higher than 97% (72h. The product biodiesel was thermo stable up to 128oC and no residual glycerol or water contaminations were detected, assuring the efficiency of the down stream process. Additional experiments were performed under microwave irradiation and the results suggested that the microwave heating constitutes a potential procedure to enhance the reaction rate by reducing the global reaction time. The operational stability of the immobilized lipase was determined in repeated batch runs under conventional and microwave heating systems, revealing biocatalyst half-life time of 110 and 26.5 h, respectively. Therefore, the real contribution of the microwave irradiations to enhance the reaction should be revalued by taking into account the lost of the biocatalyst activity.
2

Síntese enzimática do biodiesel de Jatropha curcas pela rota etílica / Enzymatic synthesis of Jatropha curcas biodiesel by ethylic route

Lívia Tereza de Andrade Souza 01 October 2010 (has links)
O esperado crescimento na demanda de biodiesel no mercado mundial tem impulsionado uma evolução constante em seu sistema de produção de forma a torná-lo mais eficiente e ambientalmente favorável. O presente trabalho teve como objetivo verificar o potencial do óleo de pinhão manso para obtenção de biodiesel pela via enzimática empregando etanol com agente acilante. Para alcançar o objetivo proposto, as atividades experimentais foram iniciadas pela adequação do óleo de pinhão manso bruto para sua utilização como matériaprima na reação de transesterificação, incluindo as etapas de degomagem, neutralização e secagem. O óleo tratado, após caracterização físico-química, foi utilizado nos testes de triagem do biocatalisador enzimático testando diferentes preparações de lipases (EC 3.1.1.3) tanto na forma livre como imobilizada em SiO2-PVA, para mediar à síntese de biodiesel em meio isento de solventes. Os testes indicaram que as lipases na forma imobilizada foram mais eficientes e permitiram selecionar os derivados imobilizados das lipases de Burkholderia cepacia e Pseudomonas fluorescens como as preparações mais adequadas para catalisar a síntese de biodiesel a partir do óleo de pinhão, com rendimentos reacionais de 93,18% e 85,67%, respectivamente. Na segunda etapa do trabalho, os derivados imobilizados selecionados foram testados na reação de interesse, mantendo-se fixa as condições reacionais (temperatura 45oC, 1:9 de razão molar óleo/etanol e 500 unidades de atividade lipolítica por grama de óleo), empregando reatores de vidro acoplados com condensador de refluxo, para evitar perda de etanol. O monitoramento da reação foi efetuado pela determinação dos ésteres etílicos formados (Cromatografia de fase gasosa) e viscosidade cinemática em amostras retiradas ao longo da reação. O produto transesterificado (biodiesel) foi purificado e submetido às análises para caracterização de suas propriedades físico-químicas, incluindo estudo reológico, espectroscopia de absorção na região do infravermelho (FTIR), análise termogravimétrica (TG) e ressonância magnética nuclear protônica (1H-RMN). Os resultados obtidos permitiram confirmar que a lipase de Burkholderia cepacia foi a preparação de lipase mais eficiente para mediar à síntese do biodiesel do óleo de pinhão manso, alcançando rendimento de transesterificação superior a 97% (72h). O biodiesel produzido manteve-se estável termicamente até 128oC e não sendo constatada contaminação do produto com glicerol ou água residual, assegurando a eficiência da etapa de purificação do produto transesterificado. Experimentos adicionais foram ainda efetuados sob irradiação de micro-ondas e os resultados obtidos indicaram que o aquecimento por micro-ondas constitui um procedimento potencial para a produção de biodiesel, tendo em vista a considerável redução do tempo global de reação. A estabilidade operacional da lipase imobilizada foi determinada em bateladas consecutivas sob aquecimento convencional e irradiação de micro-ondas, revelando um tempo de meia-vida do biocatalisador de 110 e 26,5h, respectivamente. A real contribuição da aceleração da reação por meio de irradiação de micro-ondas deverá ser reavaliada levando em consideração a acentuada perda da atividade sintética do biocatalisador. / The expected increase in the biodiesel demand worldwide has brought a constant evolution in its production system in order to make it more efficient and environmentally favorable. The objective of present work was to verify the potential of Jatropha oil as raw material to produce biodiesel by enzymatic route using ethanol as acilant agent. To attain the proposed objective, the experimental activities were starting by treating the oil to attain suitable properties to be used in the transesterification reaction, including the degumming, neutralization and drying steps. The treated oil, after physico-chemical characterization was used to carry out a screening test to select the most suitable biocatalyst by means of testing different preparations of lipases (EC 3.1.1.3) in free form as well as immobilized in SiO2-PVA, to mediate the biodiesel synthesis in solvent free system. The assays indicated that the immobilized lipases were more efficient than free ones and allowed selecting the immobilized derivatives from Burkholderia cepacia and Pseudomonas fluorescens as the most suitable preparations to catalyze biodiesel synthesis from Jatropha oil, attaining yields of 93.18% and 85.67%, respectively. In the second step, the selected immobilized derivatives were used to catalyze the reaction of interest maintaining the previous set conditions (temperature 45oC, 1:9 molar ratio oil/ethanol and 500 units of lipolytic activity per gram of oil) using a glass reactor coupled with condenser to avoid ethanol loss. The reaction was monitored by determining the formed ethyl esters by gas chromatography and viscosity in samples taken from the reactor during the reaction. The transesterified product (biodiesel) was purified and submitted to further analyses for physico-chemical properties, including rheological study, FTIR, TG and 1H NMR. The obtained results confirmed that the lipase from Burkholderia cepacia was the most efficient biocatalyst to mediate the biodiesel synthesis from Jatropha oil, attaining transesterification yields higher than 97% (72h. The product biodiesel was thermo stable up to 128oC and no residual glycerol or water contaminations were detected, assuring the efficiency of the down stream process. Additional experiments were performed under microwave irradiation and the results suggested that the microwave heating constitutes a potential procedure to enhance the reaction rate by reducing the global reaction time. The operational stability of the immobilized lipase was determined in repeated batch runs under conventional and microwave heating systems, revealing biocatalyst half-life time of 110 and 26.5 h, respectively. Therefore, the real contribution of the microwave irradiations to enhance the reaction should be revalued by taking into account the lost of the biocatalyst activity.
3

Highly efficient procedure for the synthesis of biodiesel using ionic liquid as catalyst

Lin, Jia-fang 16 July 2012 (has links)
This study used jatropha oil, waste cooing oil, and soybean oil as the raw materials for investigating effects of catalyst concentration, reaction time, reaction temperature, methanol-to-oil ratio, and catalyst types on biodiesel yield. The authors also heated up the oil to speed up the transesterification and to make the reaction more complete. Jatropha oil, waste cooing oil, and soybean oil were used as the raw materials, and three types of ionic liquid or zwitterionic liquid, [PyrMe][HSO4], [PyrMeBuS][HSO4], and [MorMeA][Br], were added as catalysts for co-catalysis while heating the oil raw materials to create the best operational condition for biodiesel production. For soybean oil used as the raw material, the best catalyzing effect (a 99.4% yield) was achieved by adding [MorMeA][Br] while the reaction time was 6min, reaction temperature was 70 ¢J, and the methanol-to-oil ratio was 9:1. Under the best reaction condition, catalyzing effect was compared between the addition of sulfate-containing ionic liquid and sulfate-containing zwitterionic liquid. The yield of the addition of sulfate-containing ionic liquid and sulfate-containing zwitterionic liquid were 97.2% and 98.7% respectively. It can be found from this study that for increasing biodiesel yield, the addition of zwitterionic liquid for co-catalysis is more effective than the addition of homogeneous ionic liquid. Comparing the best operational condition between jatropha oil and soybean oil, the best yield of jatropha oil and soybean oil was 98.5% and 99.4% respectively, while the concentration of sodium hydroxide was 0.75 wt%, [MorMeA][Br] of 1.00 wt% was added, the methanol-to-oil ratio was 9:1, the reaction time was 6 min, and the reaction temperature was 70¢J. As for disposed cooking oil, the best operational condition rendered a yield of 98.1% when the concentration of sodium hydroxide was 0.75 wt%, [MorMeA][Br] of 1.00 wt% was added, the methanol-to-oil ratio was 9:1, the reaction time was 7 min, and the reaction temperature was 70¢J. For waste cooking oil, because of the containing of impurities from frying, the yield was slightly lower and the reaction time was longer.
4

The Energy Balance of Jatropha Plantation in Sun BiofuelFarm in Central Mozambique

Soares, Castro António January 2017 (has links)
Jatropha constitutes one of promising species suitable for providing oil for biodiesel production. So, looking for good practice and sustainable use of energy during Jatropha cultivation and lack of information about Jatropha in Mozambique, this study pretends to estimate the energy balance in Jatropha plantation in Sun biofuel farm, by calculating the energy indicators based on a life cycle approach in Sun Biofuel farm located in Manica province, Central Mozambique. Energy balance is a tool which can help to calculate all energy indicators in order to evaluate and analyse the energy efficiency, sustainability and environmental benefits. This study estimated the indicator of energy balance namely: energy input is the sum of all energy used during the process of Jatropha cultivation and oil production, energy output is the amount of energy produced, Net energy value can be calculated subtracting the energy output from the energy input, Energy productivity is the division of Jatropha produced by the respective input energy, specific energy is the division of energy input by Jatropha seed output and energy ratio is the energy output divided by energy input. Also data was collected on the farm of Sun Biofuel to estimate the sustainability of agricultural production of the company. The Jatropha production in Sun Biofuel farm (SBF) absorbed around 28 579 MJ/ha of energy during the production and 121 820 MJ/ha of energy gain as result of the all production. The total energy input was direct energy with 77% and Indirect energy with 23% used in Jatropha farm, and also the total energy input was divided into renewable with 26% and non-renewable with 74% of its contribution. The results revealed that the contribution of seed husks was (8%), woody products (38%), raw seed oil (30%), Shell (9%) and press cake (15%) of total energy output in Jatropha oil production farm. Net energy value (NEV), energy productivity, energy use efficiency and Specific energy was 93 241 MJ ha-1, 0.067 Kg MJ-1, 4.3 and 15.04 MJ Kg-1, respectively. According to these results the energy balance is positive and the energy use in Jatropha production is efficient.
5

The Energy Balance of Jatropha Plantation in Sun Biofuel Farm in Central Mozambique / The Energy Balance of Jatropha Plantation in Sun Biofuel Farm in Central Mozambique

António Soares, Castro January 2017 (has links)
Jatropha constitutes one of promising species suitable for providing oil for biodiesel production. So, looking for good practice and sustainable use of energy during Jatropha cultivation and lack of information about Jatropha in Mozambique, this study pretends to estimate the energy balance in Jatropha plantation in Sun biofuel farm, by calculating the energy indicators based on a life cycle approach in Sun Biofuel farm located in Manica province, Central Mozambique. Energy balance is a tool which can help to calculate all energy indicators in order to evaluate and analyse the energy efficiency, sustainability and environmental benefits. This study estimated the indicator of energy balance namely: energy input is the sum of all energy used during the process of Jatropha cultivation and oil production, energy output is the amount of energy produced, Net energy value can be calculated subtracting the energy output from the energy input, Energy productivity is the division of Jatropha produced by the respective input energy, specific energy is the division of energy input by Jatropha seed output and energy ratio is the energy output divided by energy input. Also data was collected on the farm of Sun Biofuel to estimate the sustainability of agricultural production of the company. The Jatropha production in Sun Biofuel farm (SBF) absorbed around 28 579 MJ/ha of energy during the production and 121 820 MJ/ha of energy gain as result of the all production. The total energy input was direct energy with 77% and Indirect energy with 23% used in Jatropha farm, and also the total energy input was divided into renewable with 26% and non-renewable with 74% of its contribution. The results revealed that the contribution of seed husks was (8%), woody products (38%), raw seed oil (30%), Shell (9%) and press cake (15%) of total energy output in Jatropha oil production farm. Net energy value (NEV), energy productivity, energy use efficiency and Specific energy was 93 241 MJ ha-1, 0.067 Kg MJ-1, 4.3 and 15.04 MJ Kg-1, respectively. According to these results the energy balance is positive and the energy use in Jatropha production is efficient.
6

Air-Assited Atomization Strategies For High Viscosity Fuels

Mohan, Avulapati Madan 08 1900 (has links) (PDF)
Atomization of fuel is an important pre-requisite for efficient combustion in devices such as gas turbines, liquid propellant rocket engines, internal combustion engines and incinerators. The overall objective of the present work is to explore air-assisted atomization strategies for high viscosity fuels and liquids. Air-assisted atomization is a twin-fluid atomization method in which energy of the gas is used to assist the atomization of liquids. Broadly, three categories of air-assisted injection, i.e., effervescent, impinging jet and pre-filming air-blast are studied. Laser-based diagnostics are used to characterize the spray structure in terms of cone angle, penetration and drop size distribution. A backlit direct imaging method is used to study the macroscopic spray characteristics such as spray structure and spray cone angle while the microscopic characteristics are measured using the Particle/droplet imaging analysis (PDIA) technique. Effervescent atomization is a technique in which a small amount of gas is injected into the liquid at high pressure in the form of bubbles. Upon injection, the two-phase mixture expands rapidly and shatters the liquid into droplets and ligaments. Effervescent spray characteristics of viscous fuels such as Jatropha and Pongamia pure plant oils and diesel are studied. Measurements are made at various gas-to-liquid ratios (GLRs) and injection pressures. A Sauter Mean Diameter (SMD) of the order of 20 µm is achieved at an injection pressure of 10 bar and GLR of 0.2 with viscous fuels. An image-based method is proposed and applied to evaluate the unsteadiness in the spray. A map indicating steady/unsteady regime of operation has been generated. An optically accessible injector tip is developed which has enabled visualization of the two-phase flow structure inside the exit orifice of the atomizer. An important contribution of the present work is the correlation of the two-phase flow regime in the orifice with the external spray structure. For viscous fuels, the spray is observed to be steady only in the annular two-phase flow regime. Unexpanded gas bubbles observed in the liquid core even at an injection pressure of 10 bar indicate that the bubbly flow regime may not be beneficial for high viscosity oils. A novel method of external mixing twin-fluid atomization is developed. In this method, two identical liquid jets impinging at an angle are atomized using a gas jet. The effect of liquid viscosity (1 cP to 39 cP) and surface tension (22 mN/m to 72 mN/m) on this mode of atomization is studied by using water-glycerol and water-ethanol mixtures, respectively. An SMD of the order of 40 µm is achieved for a viscosity of 39 cP at a GLR of 0.13 at a liquid pressure of 8 bar and gas pressure of 5 bar. It is observed that the effect of liquid properties is minimal at high GLRs where the liquid jets are broken before the impingement as in the prompt atomization mode. Finally, a pre-filming air-blast technique is explored for transient spray applications. An SMD of 22 µm is obtained with diesel at liquid and gas pressures as low as 10 bar and 8.5 bar, respectively. With this technique, an SMD of 44 µm is achieved for Jatropha oil having a viscosity 10 times higher than that of diesel.

Page generated in 0.0609 seconds