Spelling suggestions: "subject:"tet ejector"" "subject:"tet jector""
1 |
CFD optimization study of high-efficiency jet ejectorsWatanawanavet, Somsak 2008 May 1900 (has links)
Research was performed to optimize the high-efficiency jet ejector geometry by
varying motive velocities from Mach 0.50 to 3.25, and mass flow ratio from 0.02 to
100.0. The high-efficiency jet ejector was simulated by Fluent Computational Fluid
Dynamics (CFD) software. A conventional finite-volume scheme was utilized to solve
two-dimensional transport equations with the standard k-ε turbulence model. In the
optimization study of the constant-area jet ejectors, all parameters were expressed in
dimensionless terms. The objective of the study was to investigate the optimal length,
throat diameter, and optimal nozzle diameter at any operating conditions. Also, the
optimum compression ratio and efficiency were calculated.
By comparing simulation results to an experiment, CFD modeling has shown
high-quality results. The overall deviation was 8.19%, thus confirming the reliability of
the modeling results.
The results from the optimization study indicate that the jet ejector efficiency
improves significantly compared to a conventional jet-ejector design. In cases with a
subsonic motive velocity, the efficiency of the jet ejector is greater than 90%. A high
compression ratio can be achieved with greater motive velocity and mass flow ratio. The ejector performance between the optimal jet ejectors and conventional jet ejectors
provided by Graham Corporation was compared. The results show that substituting a
single optimal jet ejector for a single conventional ejector reduces the motive stream
consumption by about 10% to 30%, which could decrease operating costs tremendously.
Dimensionless group analysis reveals that the research results are valid for any
fluid, operating pressure and geometric scale for a given motive-stream Mach number
and momentum ratio. The explanation of how to implement the optimization results and
selecting the best operating conditions to minimize the motive stream consumption was
included at the end of the dissertation.
|
2 |
Optimization of a high-efficiency jet ejector by computational fluid dynamic softwareWatanawanavet, Somsak 29 August 2005 (has links)
Research was performed to optimize high-efficiency jet ejector geometry
(Holtzapple, 2001) by varying nozzle diameter ratios from 0.03 to 0.21, and motive
velocities from Mach 0.39 to 1.97. The high-efficiency jet ejector was simulated by
Fluent Computational Fluid Dynamics (CFD) software. A conventional finite-volume
scheme was utilized to solve two-dimensional transport equations with the standard k-??
turbulence model (Kim et. al., 1999). In this study of a constant-area jet ejector, all
parameters were expressed in dimensionless terms. The objective of this study was to
investigate the optimum length, throat diameter, nozzle position, and inlet curvature of
the convergence section. Also, the optimum compression ratio and efficiency were
determined.
By comparing simulation results to an experiment, CFD modeling has shown
high-quality results. The overall deviation was 8.19%, thus confirming the model
accuracy. Dimensionless analysis was performed to make the research results applicable
to any fluid, operating pressure, and geometric scale. A multi-stage jet ejector system
with a total 1.2 compression ratio was analyzed to present how the research results may
be used to solve an actual design problem.
The results from the optimization study indicate that the jet ejector efficiency
improves significantly compared to a conventional jet-ejector design. In cases with a
subsonic motive velocity, the efficiency of the jet ejector is greater than 90%. A high
compression ratio can be achieved with a large nozzle diameter ratio. Dimensionless
group analysis reveals that the research results are valid for any fluid, operating pressure,
and geometric scale for a given motive-stream Mach number and Reynolds ratio
between the motive and propelled streams. For a given Reynolds ratio and motivestream
Mach number, the dimensionless outlet pressure and throat pressure are
expressed as Cp and Cpm, respectively.
A multi-stage jet ejector system with a total 1.2 compression ratio was analyzed
based on the optimization results. The result indicates that the system requires a lot of
high-pressure motive steam, which is uneconomic. A high-efficiency jet ejector with
mixing vanes is proposed to reduce the motive-steam consumption and is recommended
for further study.
|
3 |
Experimental Investigation and Modeling of Scale Effects in Micro Jet PumpsGardner, William Geoffrety January 2011 (has links)
<p>Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. </p><p>This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.</p> / Dissertation
|
4 |
EXPERIMENTAL STUDY OF ACTIVE SEPARATION FLOW CONTROL IN A LOW PRESSURE TURBINE BLADE CASCADE MODELMcQuilling, Mark 01 January 2004 (has links)
The flow field around a low pressure turbine (LPT) blade cascade model with and without flow control is examined using ejector nozzle (EN) and vortex generator jet (VGJ) geometries for separation control. The cascade model consists of 6 Pak-B Pratt andamp; Whitney low pressure turbine blades with Re = 30,000-50,000 at a free-stream turbulence intensity of 0.6%. The EN geometry consists of combined suction and blowing slots near the point of separation. The VGJs consist of a row of holes placed at an angle to the free-stream, and are tested at two locations of 69% and 10.5% of the suction surface length (SSL). Results are compared between flow control on and flow control off states, as well as between the EN, VGJs, and a baseline cascade with no flow control geometry for steady and pulsatile blowing. The EN geometry is shown to control separation with both steady and pulsatile blowing. The VGJs at 69% SSL are shown to be much more aggressive than the EN geometry, achieving the same level of separation control with lower energy input. Pulsed VGJs (PVGJ) have been shown to be just as effective as steady VGJs, and results show that a 10% duty cycle is almost as effective as a 50% duty cycle. The VGJs at 10.5% SSL are shown to be inefficient at controlling separation. No combination of duty cycle and pulsing frequency tested can eliminate the separation region, with only higher steady blowing rates achieving separation control. Thus, the VGJs at 69% SSL are shown to be the most effective in controlling separation.
|
5 |
Experimentální ověření ejektoru a vytvoření matematického modelu. / Experimental verification of ejector and creation of mathematical model.Strmiska, Michal January 2008 (has links)
This diploma thesis deals with the area of ejectors. In the intoduction, an ejector is classed as an hydraulic machine. There is also an introduction of the principle and application of this machine there. The next part describes two different ways of calculation and there is a suggestion how to get characteristics, that were achieved by calculation in MS Excel, projected. The purpose of this diploma thesis is to confront this mathematical model with the experiment done in school laboratory at Kaplan department of hydraulic machines. The description of this experiment and the evaluation procedure of measured values is described in the final part of this diploma thesis.
|
Page generated in 0.0463 seconds