• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and fabrication of Mems-based, vibration powered energy harvesting device using electrostatic transduction / Conception et réalisation d'un micro-système pour la récupération de l'énergie vibratoire du milieu ambiant par transduction électrostatique

Mahmood Paracha, Ayyaz 11 December 2009 (has links)
Avec la réduction de l’énergie consommée par les capteurs miniatures, a émergé le nouveau concept de capteurs autonomes. Il s’agit de capteurs dont l’alimentation ne dépend pas d’une source embarquée de type batterie, dont la durée de vie est limitée. Ils ont en effet la capacité de puiser l’énergie nécessaire à leur fonctionnement à partir de l’environnement dans lequel ils se trouvent. Ce concept présente de nombreux avantages, notamment la diminution des coûts de maintenance des capteurs par l’absence d’une nécessité de remplacement des piles et par conséquent une facilité accrue du déploiement des réseaux de capteurs sans fil. Parmi les sources d’énergie envisageables, les vibrations mécaniques ambiantes comptent parmi les plus prometteuses puisqu’elles sont présentes dans un grand nombre de structures : véhicules, avions, bâtiments, etc. La conversion des vibrations mécaniques en énergie électrique est réalisée en deux étapes. Dans un premier temps, un résonateur mécanique, constitué d’une masse mobile associée à un ressort, est couplé avec les vibrations de l'environnement. Grâce à ce couplage, la masse oscille dans le système de référence et accumule une énergie mécanique. La deuxième étape est la conversion de cette énergie en énergie électrique. Un transducteur électromécanique est le siège d’une force d'amortissement sur la masse en résonance, et effectue donc un travail négatif sur le système mécanique. Notre choix de transducteur électromécanique s’est arrêté sur les transducteurs électrostatiques et piézoélectriques car ils présentent l'avantage d’être compatibilité avec le procédé CMOS et adaptés à la miniaturisation. Nous avons ensuite conçu et fabriqué un transducteur électrostatique utilisant une technologie silicium verre, qui a nécessité le développement d’un procédé ad hoc de gravure DRIE. Le dispositif a été testé en utilisant un circuit électronique de type pompe de charge. Nous avons obtenu une conversion d’énergie mécanique en énergie électrique de 61 nW au moyen d’un dispositif dont la surface est de seulement 66 mm², la sollicitation vibratoire étant à la fréquence de résonance mécanique de la microstructure, qui est de 250 Hz et avec une accélération externe de 0,25 g ainsi qu’une tension initiale de 6V. Le résultat a été confronté avec des simulations effectuées sur la base d’un modèle VHDL-AMS. L’écart avec les mesures est inférieur à 3%. Ce dispositif est le premier convertisseur miniature d’énergie basé sur une transduction électrostatique, fabriqué dans un procédé collectif à base de silicium et sans l'adjonction d'un électret. Afin de procéder à une comparaison pertinente de notre travail avec les autres dispositifs rapportés dans la littérature et qui utilisent la transduction électrostatique, nous proposons une nouvelle figure de mérite (FOM) définie comme une puissance convertie normalisée. Bien que l’état de l’art actuel montre que notre réalisation présente l’un des meilleurs facteurs de mérite, la puissance produite n'est cependant pas suffisante pour alimenter un microsystème réel, à cause notamment d’une tension de « pull-in » trop basse. Quelques pistes d’amélioration sont proposées, notamment l’exploitation de non-linéarités mécaniques pour augmenter la bande passante du spectre énergétique exploitable par le micro-dispositif / Due to size effects, the microtechnologies that are used to manufacture micro-sensors, allowed a drastic reduction of electrical power consumption. This feature contributed to the emergence of the concept of autonomous sensors, which have the ability to take the energy needed for their operation from the environment where they are located. Among the different energy sources, our choice was made on ambient mechanical vibrations. The electromechanical conversion is done within a transducer integrated with a micromechanical structure. In this work, we have designed and fabricated an electrostatic transducer based on silicon-glass technology, which required the development of a dedicated deep etching process. The device was tested experimentally and we have obtained a conversion of mechanical energy into electrical energy, corresponding to a power of 61 nW, with a device whose surface area is only 66 mm². This device is the first miniaturized silicon converter based on electrostatic transduction which does not use an electret
2

Process development of silicon-silicon carbide hybrid structures for micro-engines (January 2002)

Choi, D., Shinavski, R.J., Spearing, S. Mark 01 1900 (has links)
MEMS-based gas turbine engines are currently under development at MIT for use as a button-sized portable power generator or micro-aircraft propulsion sources. Power densities expected for the micro-engines require very high rotor peripheral speeds of 300-600m/s and high combustion gas temperatures of 1300-1700K. These harsh requirements for the engine operation induce very high stress levels in the engine structure, and thus call for qualified refractory materials with high strength. Silicon carbide (SiC) has been chosen as the most promising material for use due to its high strength and chemical inertness at elevated temperatures. However, the state-of-the art microfabrication techniques for single-crystal SiC are not yet mature enough to achieve the required level of high precision of micro-engine components. To circumvent this limitation and to take advantage of the well-established precise silicon microfabrication technologies, silicon-silicon carbide hybrid turbine structures are being developed using chemical vapor deposition (CVD) of thick SiC (up to ~70µm) on silicon wafers and wafer bonding processes. Residual stress control of thick SiC layers is of critical importance to all the silicon-silicon carbide hybrid structure fabrication steps since a high level of residual stresses causes wafer cracking during the planarization, as well as excessive wafer bow, which is detrimental to the subsequent planarization and bonding processes. The origins of the residual stress in CVD SiC layers have been studied. SiC layers (as thick as 30µm) with low residual stresses (on the order of several tens of MPa) have been produced by controlling CVD process parameters such as temperature and gas ratio. Wafer-level SiC planarization has been accomplished by mechanical polishing using diamond grit and bonding processes are currently under development using CVD silicon dioxide as an interlayer material. This paper reports on the work that has been done so far under the MIT micro-engine project. / Singapore-MIT Alliance (SMA)
3

Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps

Gardner, William Geoffrety January 2011 (has links)
<p>Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. </p><p>This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.</p> / Dissertation
4

Design and fabrication of Mems-based, vibration powered energy harvesting device using electrostatic transduction

Mahmood Paracha, Ayyaz 11 December 2009 (has links) (PDF)
Due to size effects, the microtechnologies that are used to manufacture micro-sensors, allowed a drastic reduction of electrical power consumption. This feature contributed to the emergence of the concept of autonomous sensors, which have the ability to take the energy needed for their operation from the environment where they are located. Among the different energy sources, our choice was made on ambient mechanical vibrations. The electromechanical conversion is done within a transducer integrated with a micromechanical structure. In this work, we have designed and fabricated an electrostatic transducer based on silicon-glass technology, which required the development of a dedicated deep etching process. The device was tested experimentally and we have obtained a conversion of mechanical energy into electrical energy, corresponding to a power of 61 nW, with a device whose surface area is only 66 mm². This device is the first miniaturized silicon converter based on electrostatic transduction which does not use an electret

Page generated in 0.0366 seconds