Spelling suggestions: "subject:"tet low"" "subject:"tet flow""
21 |
Creation of an Orderly Jet and Thrust Generation in Quiescent Fluid from an Oscillating Two-dimensional Flexible FoilShinde, Sachin Yashavant January 2012 (has links) (PDF)
In nature, many of the flapping wings and fins in swimming and flying animals have various degrees of flexibility with strong and coupled solid-fluid interactions between the structure and the fluid. In most cases, the wing structure, the flow and their interactions are complex. This thesis experimentally investigates a ‘simple’ fluid-flexible foil interaction problem: flow generated by a pitching foil with chordwise flexibility.
To explore the effect of flexibility on the flow, we study the flow generated in quiescent water (the limiting case of infinite Strouhal number) by a sinusoidally pitching rigid symmetrical NACA0015 foil to which is attached a 0.05 mm thick chordwise flexible polythene flap at the trailing edge. The chordwise length of flap is 0.79 c, where c = 38 mm is the chord length of the rigid foil; span of the foil and flap is 100 mm. Detailed particle image velocimetry (PIV) and flow visualization measurements have been made for twelve cases, corresponding to three pitching amplitudes, ±10◦,± 15◦, ±20◦, and four frequencies, 1, 2, 3 and 4 Hz for each amplitude.
For most of these cases, a narrow coherent jet aligned along the center-line, containing a reverse B’enard–K´arm´an vortex street, and a corresponding unidirectional thrust are generated. This thrust is similar to the upward force generated during hovering, but motion of our foil is much simpler than the complex wing kinematics found in birds and insects; also the thrust generation mechanism seems to be different. In our case, the thrust is from a coordinated pushing action of the rigid foil and the flexible flap. Control volume analysis reveals the unsteady nature of thrust generation. In this intricately coupled flow generation problem, chordwise flexibility is found to be crucial in producing the coherent jet. In this thesis, we explore in detail the physics of jet flow produced by the foil with a flexible flap, and identify the importance of flexibility in flow generation. Flap motion ensures appropriate spatial and temporal release of vortices, and also imparts them convective motion, to obtain the staggered pattern that produces the jet. To describe the fluid-flap interaction, we conveniently characterize the flap through a non-dimensional stiffness, ‘effective stiffness’ (EI)∗ of the flap, that captures the effects of both the flap properties as well as the external forcing. With the same flap by changing the pitching parameters, we cover a fairly large (EI)∗ range varying over nearly two orders of magnitude. However, we observed that only moderate (EI)∗ (~0.1 - 1) generates sustained narrow, orderly jet. We provide thrust estimates useful for the design of flapping foil thrusters/propulsors. Although this study has only indirect connections with the hovering in nature, it may be useful in understanding the role of flexibility of bird and insect wings during hovering.
In contrast, a foil with a rigid trailing edge produces a weak jet whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions over a wide range of pitching parameters.
|
22 |
Experimental and numerical investigation of gas jet and liquid film interactionMyrillas, Konstantinos 14 October 2011 (has links)
The topic of this thesis is the interaction between gas jet flow and a liquid film dragged by a solid substrate. This method, known as jet-wiping, is used in several industrial processes. Hot-dip galvanization of steel strips is an important application, where jet wiping is used to control the thickness of the liquid zinc that is applied on a continuous steel substrate. Unsteady phenomena in the process lead to the creation of waves on the liquid film, which is known as undulation. This unwanted phenomenon deteriorates the quality of the final product.<p>The aim of the current study is to identify the causes of the undulation and propose possible solutions to tackle the problem. This is achieved through studying the hydrodynamic interaction between the gas jet flow and the liquid film. Experiments on a laboratory test facility and numerical simulations with 3 different Computational Fluid Dynamics (CFD) codes are employed for that purpose. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
23 |
Vliv omezujících stěn na proudění z ventilační vyústky / Influence of boundary walls on the flow from the ventilation outletMolčan, Filip January 2018 (has links)
The goal of this work is to experimentally assess the influence of limiting walls of Škoda Octavia 3 automobile cabin to the air jet flowing from the right-front situated automotive vent which is part of a car dashboard. The experiment is performed by the smoke visualization method. There is a single construction option measured for an experiment. The setup of the vanes direction and the air flow rate are modified for this option. The experiment is divided into two phases. In the first phase, the visualization of the free air flow is conducted. In the second phase, exit plates are constructed and consequently, the visualization of the wall-jet flow is conducted. The results of both are compared to each other. The results imply that the influence of the surrounding surfaces must be taken into account with the increasing flow rate for the vanes set in the direction of upper-right, middle-right, and middle-middle. There is a direct interaction between the flow and exit plates (the flow impact, the Coanda effect). The free flow does not contain the information about the mutual interaction between the flow and the exit plates, as it is in the case of the wall-jet flow. In the case of the wall-jet flow, the opening of the flow takes place due to the effect of the impact and the subsequential suction caused by the Coanda effect. The exit plates substituting the car dashboard and the front window contribute to the prevention of the air intake from surrounding space and consequently to earlier flow opening from the vent. The present work also contains the measurement methodology and the image evaluation, the comparison with previous free flow measurements (70% match) and the comparison to the measurement of hot-wire anemometry method.
|
24 |
A Theory and Analysis of Planing Catamarans in Calm and Rough WaterZhou, Zhengquan 16 May 2003 (has links)
A planing catamaran is a high-powered, twin-hull water craft that develops the lift which supports its weight, primarily through hydrodynamic water pressure. Presently, there is increasing demand to further develop the catamaran's planing and seakeeping characteristics so that it is more effectively applied in today's modern military and pleasure craft, and offshore industry supply vessels. Over the course of the past ten years, Vorus (1994,1996,1998,2000) has systematically conducted a series of research works on planing craft hydrodynamics. Based on Vorus' planing monohull theory, he has developed and implemented a first order nonlinear model for planing catamarans, embodied in the computer code CatSea. This model is currently applied in planing catamaran design. However, due to the greater complexity of the catamaran flow physics relative to the monohull, Vorus's (first order) catamaran model implemented some important approximations and simplifications which were not considered necessary in the monohull work. The research of this thesis is for relieving the initially implemented approximations in Vorus's first order planing catamaran theory, and further developing and extending the theory and application beyond that currently in use in CatSea. This has been achieved through a detailed theoretical analysis, algorithm development, and careful coding. The research result is a new, complete second order nonlinear hydrodynamic theory for planing catamarans. A detailed numerical comparison of the Vorus's first order nonlinear theory and the second order nonlinear theory developed here is carried out. The second order nonlinear theory and algorithms have been incorporated into a new catamaran design code (NewCat). A detailed mathematical formulation of the base first order CatSea theory, followed by the extended second order theory, is completely documented in this thesis.
|
Page generated in 0.0535 seconds