Spelling suggestions: "subject:"tet burbine"" "subject:"tet aturbine""
81 |
Unsteady separated boundary layers in axial-flow turbomachinerySchulte, Volker Benno January 1995 (has links)
No description available.
|
82 |
An investigation of radial inflow turbine aerodynamicsHuntsman, Ian January 1993 (has links)
No description available.
|
83 |
Tip clearance flow in axial compressorsStorer, John Andrew January 1991 (has links)
No description available.
|
84 |
Wireless Interface Technologies for Sensor NetworksJobs, Magnus January 2015 (has links)
The main focus of the work presented in this thesis concerns the development and improvement of Wireless Sensor Networks (WSNs) as well as Wireless Body Area Networks (WBANs). WSN consist of interlinked, wireless devices (nodes) capable of relaying data wirelessly between the nodes. The applications of WSNs are very broad and cover both wireless fitness monitoring systems such as pulse watches or wireless temperature monitoring of buildings, among others. The topics investigated in the work presented within this thesis covers antenna design, wireless propagation environment evaluation and modeling, adaptive antenna control and wireless nodes system design and evaluation. In order to provide an end-user suitable solution for wireless nodes the devices require both small form factor and good performance in order to be competitive on the marked and thus the main part of this thesis focuses on techniques developed and data collected to help achieve these goals. Several different prototype systems have been developed which have been used to measure data by the Swedish Defence Research Agency (FOI), GKN Aerospace Sweden AB, the Swedish Transport Administration. The system developed with GKN Aerospace was used to do real-time test measurements inside a running RM12 jet engine and required a substantial amount of measurements, environmental modeling and system validation in order to properly design a wireless system suitable for the harsh and fast fading environment inside a jet engine. For FOI improvements were made on a wearable wireless body area network initially developed during the authors master thesis work. Refinements included work on new generation wireless nodes, antenna packaging and node-supported diversity techniques. Work and papers regarding the design of different types of antennas suitable for wireless nodes are presented. The primary constraints on the presented antennas are the limited electrical size. The types of antennas developed include electrically small helix antennas manufactured both on stretchable substrates consisting of a PDMS substrate with Galinstan as the liquid metal conductors, screen printed silver ink for helix antennas and conformal dual patch antennas for wireless sensor nodes. Other standard type antennas are included on the wireless sensors as well.
|
85 |
Design and construction of a small gas turbine to drive a permanent magnet high speed generatorEbaid, Munzer Shehadeh Yousef January 2002 (has links)
Radial gas turbines engines have established prominence in the field of small turbomachinery because of their simplicity, relatively high performance and installation features. Thus they have been used in a variety of applications such as generator sets, small auxiliary power units (APu), air conditioning of aircraft cabins and hybrid electric vehicles turbines. The current research describes the design, manufacturing, construction and testing a radial type small gas turbine. The aim was to design and build the engine to drive directly a high-speed permanent magnet alternator running at 60000 rpmand developing a maximum of 60 W. This direct coupling arrangement produces a portable, light, compact, reliable and environment friendly power generator. These features make the generator set very attractive to use in many applications including emergency power generation for hospitals, in areas of natural disasters such as floods and earthquakes, in remote areas that cannot be served from the national grid, oil rigs, and in confined places of limited spaces. It is important to recognize that the design of the main components, that is, the inward flow radial UFR turbines, the centrifugal compressor and the combustion chamber involve consideration of aero-dynamics, thermodynamics, fluid mechanics, stress analysis, vibration analysis, selection of bearings, selection of suitable materials and the requirements for manufacturing. These considerations are all inter-linked and a procedure has been followed to reach an optimum design. This research was divided into three phases: phase I dealt with the complete design of the inward radial turbine, the centrifugal compressor, the power transmission shaft, the selection of combustion chamber and the bearing housing including the selection of bearings. Phase 2 dealt with mechanical consideration of the rotating components that is stress, thermal and vibration analyses of the turbine rotor, the impeller and the rotating shaft, respectively. Also it dealt with the selection of a suitable fuel and oil lubrication systems and a suitable starting system. Phase 3 dealt with the manufacturing of the gas turbine components, balancing the rotating components, assembling the engine and finally commissioning and then testing the engine. The current work in this thesis has put the light on a new design methodology on determining the optimum principal dimensions of the rotor and the impeller. This method, also, has defined the optimum number of blades and the axial length of the rotor and the impeller. Mathematical models linking the performance parameters and the design variables for the turbine and the compressor have been developed to assist in carrying out parametric studies to study the influence of the design parameters on the performance and on each other. Also, a new graphical matching procedure has been developed for the gas turbine components. This technique can serve as a valuable tool to determine the operating range and the engine running line. Furthermore, it would decide whether the gas turbine engine operates in a region of satisfactory compressor and turbine efficiencies.
|
Page generated in 0.0533 seconds