Spelling suggestions: "subject:"tet energy resolution"" "subject:"beet energy resolution""
1 |
Recherche de technicouleur avec l'expérience ATLAS. Développement d'outils et étude des performances du calorimètre à argon liquide / Looking for Technicolor using ATLAS. Tools development and performances study of the Liquid Argon Calorimeter.Helary, Louis 09 December 2011 (has links)
En 2011, le LHC a fourni près de 5 fb−1 de données aux expériences. Ces données ont été utilisées pour comprendre plus avant les détecteurs, leurs performances et effectuer des analyses de physique. Cette thèse est organisée en cinq chapitres. Le premier est une introduction théorique au Modèle Standard et à une de ses extensions possible : la TechniCouleur. Le deuxième chapitre donne un bref aperçu de l'accélérateur LHC et de l'expérience ATLAS. Dans le troisième chapitre, l'un des principaux sous-système de l'expérience ATLAS est présenté : le calorimètre à argon liquide. L'algorithme de contrôle de l'acquisition et de la qualité des données que j'ai développé au cours de ma thèse est également présenté. Le quatrième chapitre présente une étude des performances de la reconstruction des jets basée sur l'ensemble des données acquises en 2010. Cette étude a montré qu'en 2010, la résolution en énergie des jets dans le Monte-Carlo a été sous-estimée d'un facteur relatif d'environ 10% par rapport aux données. Cette étude a été ensuite reconduite pour évaluer l'impact de la réduction de la HV dans des zones du calorimètre sur la résolution en énergie des jets. Cet impact a été jugée négligeable. Pour des jets produits avec une rapidité |y| < 0.8, l'augmentation de la résolution en énergie due à la réduction de la HV, est évaluée à moins de 3 % pour un jet de pT = 30 GeV jet, et moins de 0,1 % pour un jet de pT = 500 GeV. Enfin, le dernier chapitre de cette thèse présente une étude de l'état final Wgamma. La contribution des différents processus du MS participant à cet état final a été estimée à partir du Monte Carlo et des données. Une recherche de résonances étroites a ensuite été effectuée en utilisant la distribution M(W,gamma) dans un intervalle [220,440] GeV, mais aucun écart significatif des prédictions du MS n'a été observé. Cette étude a permis de fixer des limites sur la production de particules TC correspondant à M(a_{T}) > 265 GeV ou M(\rho_{T}) > 243 GeV. / In 2011 the LHC has provided almost 5 fb-1 of data to the experiments. These data have been used to perform a deep commissioning of the detectors, understand the performances of the detector and perform physics analysis. This thesis is organized in five chapter. The first one is a theoretical introduction to the Standard Model and to one of its possible extension: the TechniColor. The second chapter gives a brief overview of the LHC and the ATLAS experiments. In the third chapter one of the key subsystem of the ATLAS experiment is presented: the LAr calorimeters. The monitoring of the data acquisition developed during my thesis is also presented in this chapter. The fourth chapter presents a study of the jet performances based on the data set acquired in 2010. This study has shown that in 2010, the Monte Carlo was underestimating the jet energy resolution by a relative factor of about $10\%$. This study was refocused to evaluate the impact of the reduced LAr HV area on the jet energy resolution. The impact of the HV reduced region was found to be negligible. For jets produced with a rapidity |y|<0.8, the increase of energy resolution due to the HV reduction, is evaluated at less than 3% for a pT=30 GeV jet, and less than 0.1% for a pT=500 GeV jet. Finally the last chapter of this thesis present a study of the Wgamma final state. The standard model backgrounds contributing to this final state were estimated from Monte Carlo and from data. A search for narrow resonances was then conducted using the M(Wgamma) distribution in a range [220,440] GeV, but no significant deviation from the SM was observed. This study has allowed to set limits on the production of TC particles corresponding to M(a_{T}) > 265 GeV or M(\rho_{T}) > 243 GeV.
|
Page generated in 0.0868 seconds