• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stability of Pharmaceutical Cocrystal During Milling: A Case Study of 1:1 Caffeine-Glutaric Acid

Chow, P.S., Lau, G., Ng, W.K., Vangala, Venu R. 27 June 2017 (has links)
yes / Despite the rising interest in pharmaceutical cocrystals in the past decade, there is a lack of research in the solid processing of cocrystals downstream to crystallization. Mechanical stress induced by unit operations such as milling could affect the integrity of the material. The purpose of this study is to investigate the effect of milling on pharmaceutical cocrystal and compare the performance of ball mill and jet mill, using caffeine-glutaric acid (1:1) cocrystal as the model compound. Our results show that ball milling induced polymorphic transformation from the stable Form II to the metastable Form I; whereas Form II remained intact after jet milling. Jet milling was found to be effective in reducing particle size but ball milling was unable to reduce the particle beyond certain limit even with increasing milling intensity. Heating effect during ball milling was proposed as a possible explanation for the difference in the performance of the two types of mill. The local increase in temperature beyond the polymorphic transformation temperature may lead to the conversion from stable to metastable form. At longer ball milling duration, the local temperature could exceed the melting point of Form I, leading to surface melting and subsequent recrystallization of Form I from the melt and agglomeration of the crystals. The findings in this study have broader implications on the selection of mill and interpretation of milling results for not only pharmaceutical cocrystals but pharmaceutical compounds in general.
2

Development of a Dry Powder Inhaler and Nebulised Nanoparticle-Based Formulations of Curcuminoids for the Potential Treatment of Lung Cancer. Development of Drug Delivery Formulations of Curcuminoids to the Lungs using Air Jet Milling and Sonocrystallisation Techniques for Dry Powder Inhaler Preparations; and Nanoemulsion and Microsuspension for Nebuliser Formulations

Al Ayoub, Yuosef January 2017 (has links)
Curcuminoids have strong anticancer activities but have low bioavailability. The highest rate of cancer deaths comes from lung tumours; therefore, inhaled curcuminoids could treat lung cancer locally. To date, there are no nebulised formulations of curcuminoids, and there are no inhalable curcuminoids particles without excipients using air jet mill and sonocrystallisation methods for DPI formulations. It is the first time; the aerodynamic parameters of curcumin, demethoxycurcumin and bisdemethoxycurcumin were measured individually using NGI. The size, shape, free surface energy, and the crystal polymorphism of the produced inhalable curcuminoid particles were characterised using laser diffraction, SEM, IGC, DSC and XRPD, respectively. Several DPI formulations with a variable particle size of curcuminoids were prepared in two drug-carrier ratios (1:9 and 1:67.5). The best performance of the DPI formulations of the sonocrystallised particles, which exist in crystal structure form1, were obtained from ethanol- heptane, as illustrated FPF 43.4%, 43.6% and 43.4% with MMAD of 3.6µm, 3.5µm and 3.4µm, whereas the best DPI formulation of the air jet milled particles was presented FPF 38.0%, 38.9%, and 39.5% with MMAD of 3.6µm, 3.4µm and 3.2µm for curcumin, demethoxycurcumin and bisdemethoxycurcumin, respectively. Nebulised curcuminoids using nanoemulsion and microsuspension formulations were prepared. The physical properties, such as osmolality, pH and the viscosity of the aerosolised nanoemulsion and the microsuspension formulations were determined. The FPF% and MMAD of nebulised nanoemulsion ranged from 44% to 50% and from 4.5µm to 5.5µm respectively. In contrast, the FPF% of microsuspension ranged from 26% to 40% and the MMAD from 5.8µm to 7.05µm. A HPLC method was developed and validated in order to be used in the determination of curcuminoids from an aqueous solution.
3

Development of a dry powder inhaler and nebulised nanoparticle-based formulations of curcuminoids for the potential treatment of lung cancer : development of drug delivery formulations of curcuminoids to the lungs using air jet milling and sonocrystallisation techniques for dry powder inhaler preparations, and nanoemulsion and microsuspension for nebuliser formulations

Al Ayoub, Yuosef January 2017 (has links)
No description available.
4

Development of Triazole-based Dry Powder Formulations for Inhalation

Merlos, Romain 04 July 2019 (has links) (PDF)
Among the different pulmonary fungal infections, aspergillosis, and in particular invasive pulmonary aspergillosis (IPA), are becoming the most worrying diseases in immunocompromised patients. This is due to their high incidence and mortality. Indeed, invasive aspergillosis manifests as invasive pulmonary disease accounting for 50/60% of all cases, with a mortality of 50-90% in severely immunocompromised patients. Triazoles act by inhibiting 14-α demethylase, a fungal cytochrome P450 enzyme implicated in the synthesis of ergosterol, an essential constituent of fungal cell walls. Moreover, they interact with the same cytochrome present in large quantities in the human liver, inducing possible drug-drug interactions in IPA patients. Consequently, interactions resulting from inhibitors, inductors, or substrates of cytochromes can modify the plasmatic concentrations of triazoles or other drugs administered concomitantly. To overcome these important issues, pulmonary delivery of triazoles could be an interesting alternative to conventional routes.The aim of this work was to develop triazole-based dry powders for inhalation able to be deposited adequately in the lungs, with a release of drug and a lung retention that can optimize its pharmacological action. This work focused on two active pharmaceutical ingredients (API): itraconazole (ITZ), for which improved solubility was needed, and voriconazole (VCZ), for which slow release was required.Concerning ITZ, solid dispersions for inhalation (SDIs) comprising ITZ and mannitol were previously developed in our laboratory. The selected SDI showed interesting results in terms of improved dissolution and lung retention in vivo in mice during a pharmacokinetic study. Therefore, this SDI was tested in a murine preclinical model of IPA and showed promising results in terms of prophylaxis efficacy. One aim of this work was to continue the pharmaceutical development of this promising SDI by making a scaling-up study. These methods were intended to improve the SDI’s ecological footprint and productivity by increasing the production yield and decreasing the amount of solvents and time used in its manufacture. During the first step of this study, the obtained SDI showed interesting results obtaining similar powder characteristics (i.e. amorphous content, aerodynamic performance, and dissolution profiles) from concentrated solutions using a laboratory-scale spray-dryer B-290 (Büchi, Switzerland) before using a pilot-scale spray-dryer (GEA Niro, Denmark). Then, the upscaling was performed on the pilot spray-dryer allowing the production of SDIs with increased productivity (yield and process duration). These SDIs had similar powder characteristics than the optimized lab-scale SDIs. During the second part of this work we developed VCZ based dry powder for inhalation. The aim was to slow down the release of this highly permeable and very slightly soluble API and to prolong its lung residence. To this end, various lipidic excipients were chosen. The selection took into account the potential good pulmonary tolerance of the lipids and their hydrophobicity to evaluate their ability to slow down the VCZ release (FPFs 20-25%, slowed release up to 24h, burst effect of ± 58% of VCZ dissolved within 30min). Immediate-release SDIs were also developed to have a comparator reference for the pharmacokinetic and efficacy studies (FPFs of 40%).Then, a pharmacokinetic study in mice was performed following the pulmonary administration of one immediate-release and two sustained-release SDIs (with or without PEG excipient). With an 80-fold higher pulmonary exposure over 24 hours, the slow-release SDIs presented a real interest compared to the immediate-release SDI. Moreover, in accordance with these results, VCZ plasma exposure following the administration of the SDI with PL90-H was more than 1.5-fold higher than its pulmonary exposure (AUC0-24 of 8.70 µg.h/g in the lungs and 14.70 µg.h/mL in the plasma). The slow-release formulations presented plasma exposures at least 15 times lower than their pulmonary exposures (AUC0-24 in lung of 741.40 and 686.85 µg.h/g vs plasmatic AUC0-24 of 37.44 and 42.81 µg.h.mL, respectively with and without PEG excipient). Moreover, the presence of PEG excipient did not influence the residence time and the exposure of the VCZ within the lungs. Finally, the sustained-release SDIs administration by inhalation led to VCZ lung and plasma concentrations higher than the minimal inhibitory concentration (MIC) of VCZ against Aspergillus fumigatus (1 μg/mL) over 24 h. Finally, a murine model of IPA was developed in our lab. The immunosuppression model was fixed and performed by the intraperitoneal (IP) injection of corticosteroids to induce a neutropenia state. Then, different doses of spores (from 1.10^4 to 5.10^6 spores) were inoculated to the neutropenic mice via an endotracheal instillation and the survival rate of each group was observed. Unfortunately, the survival rate resulting from the different infections were not reproducible. Therefore, these models were not suitable to conduct the efficacy study. This underlined the link between the immunosuppressive model and the infection. Indeed, the IPA murine model should be developed according to the immune state of the animal, the Aspergillus conidia species and its concentration to be used. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished

Page generated in 0.0481 seconds