• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 50
  • 25
  • 25
  • 25
  • 25
  • 25
  • 25
  • 2
  • Tagged with
  • 175
  • 175
  • 175
  • 47
  • 23
  • 20
  • 19
  • 16
  • 16
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Formation and break up of microscale liquid jets

Hunter, Hanif 12 January 2009 (has links)
The evolution of column instabilities that lead to break up of a microscale liquid jet is studied experimentally using shadowgraph technique. The jet formation is investigated over a range of Reynolds number, Pressure Ratio, and Ohnesorge number which are varied by the driving pressure, observation chamber pressure, and the jet liquid. Over the range of these parameters, the jet experiences different break up mechanisms as a result of different dominant instabilities. The present investigation discusses both break up mechanisms that are similar to the break up of macroscale jets and some new microscale break up phenomena.
152

Investigation of Jet Dynamics in Cross-Flow: Quantifying Volcanic Plume Behavior

Freedland, Graham 23 November 2016 (has links)
Volcanic eruption columns inject high concentrations of ash into the atmosphere. Some of this ash is carried downwind forming ash clouds in the atmosphere that are hazardous for private and commercial aviation. Current models rely on inputs such as plume height, duration, eruption rate, and meteorological wind fields. Eruption rate is estimated from plume height using relations that depend on the rate of air entrainment into the plume, which is not well quantified. A wind tunnel experiment has been designed to investigate these models by injecting a vertical air jet into a cross-flow. The ratio of the cross-flow and jet velocities is varied to simulate a weak plume, and flow response is measured using particle image velocimetry. The plumes are characterized and flow data relative to the centerline is examined to measure the growth of weak plumes and the entrainment velocity along its trajectory. It was found that cross-flow recirculates behind the jet and entrainment occurs both up and downstream of the jet. Analysis of the generation of turbulence enhanced results by identifying the transition point to bending plume and the growth of the shear layer in a bending plume. This provides information that can be used to improve models of volcanic ash concentration changes in the atmosphere.
153

Navier-Stokes prediction of the three dimensional flowfield of jets in a crossflow using the finite element method

Oh, Tae Shik January 1988 (has links)
A Prandtl-type eddy viscosity model including the first-order effect of turbulence structure has been developed to deal with curved free-shear flows. The model is generalized to account for the effect of arbitrary cross-section of the jets injected from a various nozzle configurations into a uniform crossflow. The model is implemented as a module of a general purpose finite-element computer code. The finite-element procedures used here follow from a Galerkin type variational formulation with the penalty approximation for pressure in a consistent manner, with which a significant savings in computational time and storage are achieved. In order to simulate complicated 3-D turbulent flow with a restricted computational space and modest mesh, a slip condition is employed to model the wall flow and stress-free conditions are used for the farfield and outflow boundaries. Numerical predictions are performed for three problems: a single circular jet in a crossflow, a single streamwise aligned rectangular (aspect ratio 4) jet in a crossflow, and dual side-by-side rectangular jets in a crossflow, all at a jet-to-crossflow velocity ratio 4, which is important for V/STOL and other applications. The prediction of the mean velocity components of the circular jet case is in excellent agreement with the measured data except for the near wall region. The surface pressure comparison is very good except for the viscous wake region right behind the nozzle due to flow separation. The current pressure prediction is as good as any inviscid solution given by singularity or panel method with empirically tuned jet properties. No mean flowfield comparison is made for the single rectangular jet case due to the lack of available measured data. Surface pressure comparison is consistently very good, especially for the region near the front corners of the nozzle where the large negative peaks appear. The agreement for this case seems to be even better than the circular jet case, and the reason is, as observed in the surface velocity vector plot, the different vortex structure and mixing in the vicinity of the nozzle. For the dual jets case, the surface pressure prediction is still in a very good agreement, and the mean velocity comparison shows better agreement as the mesh is refined. The flowfield is found to be more complicated than the circular jet case due to the jet interaction, and further mesh refinement is needed for the complete resolution of the jet/wake flowfield. However, if the surface pressure prediction is the major concern, as in the V/STOL applications, the current size of computational space along with numerical strategies adopted here can serve that purpose effectively. Finally, the mean velocity and the pressure prediction obtained here for rectangular jet(s) are the first known to this author, and will provide useful information for the 3-D, complex, turbulent, free shear flow computations. / Ph. D.
154

Dynamics and Stability of Multiple Jets in Geophysical Flows

Sinha, Anirban January 2013 (has links) (PDF)
The effect of rotation on the stability of multiple jets in planetary atmospheres is system- atically investigated. Typically in Jovian planetary atmospheres, multiple zonal jets have been observed and their morphology has been systematically studied. The formation of jets has always been viewed as a nonlinear problem where most work has followed from the ideas of potential vorticity (PV) homogenization or turbulent mixing on a β-plane. In our present work, we have aimed to look at the linear stability of multiple jets in a geophysical fluid, and hope to add further insight into the observed jet profiles in β-plane turbulence. In addition, we also study the evolution and life-cycle of these jets as they interact with each other in a non linear fashion. We begin with the linear stability of the \Bickley jet" using the linearized shallow water quasigeostrophic (QG) equations. We have included a finite deformation radius in our calculations to partially mimic the effects of compressibility. A family of synthetically generated velocity profiles with east-west jets are then studied. In particular, a variety of flow configurations with two jets have been considered with a parameter sweep across jet separation, relative jet strength and thickness. As a broad observation, it is noted that an asymmetric east-west jet profile with a stronger and sharper eastward jet is the most stable of all the profiles considered, and a finite deformation radius further stabilizes such profiles. More realistic jet profiles have also been considered and the role of a finite deformation radius in stabilizing such jets is elucidated. We also examined the nonlinear evolution of multiple jets in a periodic domain and in a channel geometry, as we undertake freely decaying long time simulations of the governing QG equation. As per the \Selective Decay" principle we observe that arbitrary initial conditions approach the flow configuration of the prescribed \suitable end states". In addition, we have shown how a finite deformation length scale modifies these \suitable end states". As a broad observation, we have noted that a linearly unstable jet flow configuration, in the presence of β, breaks down into turbulence and reforms into a more asymmetric jet profile with a stronger and sharper eastward jet. The inclusion of a finite deformation length scale in our calculations, is observed to suppress such jet formation. Similar numerical experiments have been performed in a channel and the results have been compared. Chiefly, for the end states, the nature of the observed jet asymmetry is reversed, i.e., the westward jets are observed to be stronger in a channel.
155

Theoretical modeling and experimental studies of particle-laden plumesfrom wastewater discharges

Li, Chunying, Anna., 李春穎. January 2006 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
156

Performance and flow stability characteristics in two-phase confined impinging jets

Sabo, Michael D. 05 March 2012 (has links)
Advances in electronics fabrication, coupled with the demand for increased computing power, have driven the demand for innovative cooling solutions to dissipate waste heat generated by these devices. To meet future demands, research and development has focused on robust and stable two-phase heat transfer devices. A confined impinging jet is explored as means of utilizing two-phase heat transfer while minimizing flow instabilities observed in microchannel devices. The test configuration consists of a 4 mm diameter jet of water that impinges on a 38 mm diameter heated aluminum surface. Experimental parameters include inlet mass flow rates from 150 to 600 g/min, nozzle-to-surface spacing from 1 to 8 mm, and input heat fluxes from 0 to 90 W/cm2. Results were used to assess the influence of the testing parameters on the heat transfer performance and stability characteristics of a two-phase confined impinging jet. Stability characteristics were explored using power spectral densities (PSDs) of the inlet pressure time series data. Confined impinging jets, over the range of conditions tested, were found to be stable and an efficient means of removing large amounts of waste heat. The radial geometry of the confined jet allows the fluid to expand as it flows radially away from the nozzle, which suppresses instabilities found in microchannel array geometries. Conditions of the heater surface were found to strongly influence two-phase performance. Analysis of PSDs, for stable operation, showed dominate frequencies in the range of 1-4 Hz, which were attributed to generated vapor expanding in the outlet plenum and the subsequent collapse as it condensed. A stability indicator was developed by inducing artificial instabilities into the system by varying the amount of cross sectional area available for outlet vapor removal and compared to the results for stable operation. / Graduation date: 2012
157

Quantitative Acetone PLIF Measurements of Jet Mixing with Synthetic Jet Actuators

Ritchie, Brian Douglas 11 April 2006 (has links)
Fuel-air mixing enhancement in axisymmetric jets using an array of synthetic jet actuators around the perimeter of the flows (primarily parallel to the flow axis) was investigated using planar laser-induced fluorescence of acetone. The synthetic jets are a promising new mixing control and enhancement technology with a wide range of capabilities. An image correction scheme that improved on current ones was applied to the images acquired to generate quantitative mixing measurements. Both a single jet and coaxial jets were tested, including different velocity ratios for the coaxial jets. The actuators run at a high frequency (~1.2 kHz), and were tested with all of them on and in other geometric patterns. In addition, amplitude modulation was imposed at a lower frequency (10-100 Hz). The actuators generated small-scale structures in the outer (and inner, for the coaxial jets) mixing layers. These structures significantly enhanced the mixing in the near field (x/D less than 1) of the jets, which would be useful for correcting an off-design condition in a combustor. The amplitude modulation generated large-scale structures that became apparent farther downstream (x/D greater than 1). The impulse at the start of the duty cycle was responsible for creating the structures. The large structures contained broad regions of uniformly mixed fluid, and also entrained fluid significantly. In addition, highly asymmetric forcing geometries displayed the power of the actuators to control the spatial distribution of jet fluid. This spatial control is important for the correction of hot spots in the pattern factor. In order to extend quantitative acetone PLIF to two-phase flows, the remaining unknown photophysical properties of acetone were identified. Tests showed that the technique could simultaneously capture acetone vapor and acetone droplets. A model of droplet fluorescence was developed, and applied to images acquired in a dilute spray. The sensitivity of the model to the value of the unknowns was evaluated, including a best and worst case. The results revealed that several liquid acetone photophysical properties must be measured for the further development of the technique, especially the phosphorescence yield. Quantitative two-phase acetone PLIF will provide a powerful new tool for studying spray flows.
158

A Micromachined Ultrasonic Droplet Generator: Design, Fabrication, Visualization, and Modeling

Meacham, John Marcus 07 July 2006 (has links)
The focus of this Ph.D. thesis research is a new piezoelectrically driven micromachined ultrasonic atomizer concept that utilizes fluid cavity resonances in the 15 MHz range along with acoustic wave focusing to generate the pressure gradient required for droplet or jet ejection. This ejection technique exhibits low-power operation while addressing the key challenges associated with other atomization technologies including production of sub-5 um diameter droplets, low-temperature operation, the capacity to scale throughput up or down, and simple, low-cost fabrication. This thesis research includes device development and fabrication as well as experimental characterization and theoretical modeling of the acoustics and fluid mechanics underlying device operation. The main goal is to gain an understanding of the fundamental physics of these processes in order to achieve optimal design and controlled operation of the atomizer. Simulations of the acoustic response of the system for various device geometries and different ejection fluid properties predict the resonant frequencies of the device and confirm that pressure field focusing occurs. High-spatial-resolution stroboscopic visualization of fluid ejection under various operating conditions is used to investigate whether the proposed atomizer is capable of operating in either the discrete-droplet or continuous-jet mode. The results of the visualization experiments combined with a scaling analysis provide a basic understanding of the physics governing the ejection process and allow for the establishment of simple scaling laws that prescribe the mode (e.g., discrete-droplet vs. continuous-jet) of ejection. In parallel, a detailed computational fluid dynamics (CFD) analysis of the fluid interface evolution and droplet formation and transport during the ejection process provides in-depth insight into the physics of the ejection process and determines the limits of validity of the scaling laws. These characterization efforts performed in concert with device development lead to the optimal device design. The unique advantages enabled by the developed micromachined ultrasonic atomizer are illustrated for challenging fluid atomization examples from a variety of applications ranging from fuel processing on small scales to ultra-soft electrospray ionization of biomolecules for bioanalytical mass spectrometry.
159

A Numerical Study On Absolute Instability Of Low Density Jets

Chakravorty, Saugata 05 1900 (has links)
A spectacular instability has been observed in low density round jets when the density ratio of jet fluid to ambient fluid falls below a threshold of approximately 0.6. This phenomenon has been observed in non-buoyant jets of helium in air, heated air jets and heated buoyant jets. The oscillation of the flow near the nozzle is extremely regular and periodic and consists of ring vortices. Even the smaller scale structures that appear downstream exhibit similar regularity. A theory for predicting the onset of this oscillation is based on finding regions of absolute instability from linear stability analysis of parallel flow. However, experiments suggest that the theory is at least incomplete and fortuitous as the oscillation is not a linear process. The present work is to observe and understand the process of regeneration of these oscillations by conducting numerical simulations. Here, two-dimensional, plane jets were simulated because they undergo a qualitatively similar process. A spatial and temporal picture of a heated jet has been obtained numerically. A perturbation expansion was used to obtain a system of conservation laws for compressible flows which is valid for low Mach numbers. The low Mach number approximation removes the high frequency acoustic waves from the flow field. This enables a larger time step to be taken without making the calculation unstable. To ensure that all the scales of motion are properly resolved, calculations were done at a low Reynolds number. The governing equations were discretized in space using second-order finite difference formulas on a staggered grid. Velocity fields were advanced using a second-order Adams-Bashforth explicit scheme and then corrected by solving for pressure such that continuity is satisfied at every time step. The Poisson problem for pressure requires the time derivative of the density which was approximated by a third-order backward difference formula. Gauss-Siedel iteration was used to find the pressure. Several numerical tests were conducted prior to simulations of variable density jets to check the stability and accuracy of the code. Two dimensional driven cavity flow calculations were done as a first test. Then a calculation of a forced, spatially developing, incompressible, plane mixing layer was done to check the time accuracy of the code. After obtaining satisfactory performance of the code for the different test cases, two-dimensional, variable density jets were simulated. Since the plane jet extends ad infinitum in the streamwise direction, a sufficiently large domain was used to capture all the relevant physics in the downstream regions of the jet. An advective boundary condition was imposed at the exit plane. Rigid, slipwall conditions were employed to prescribe lateral boundary conditions. A 2-D, incompressible plane jet was simulated first. The jet profile was approximated by two hyperbolic tangent shear layers. The most unstable mode of the inviscid shear layer for this profile, along with its first and second harmonics, was imposed on the velocity profile at the inlet plane. The amplitude of oscillation of the harmonics was chosen so as to provide sufficient energy in the perturbation to accelerate the growth of the layer. No explicit phase lag was introduced in the perturbation. The flow was allowed to develop long enough to wash out the effect of the initial condition. The results obtained for this case indicate that experimentally realized phenomena such as vortex pairing were captured in this simulation. Furthermore, to check the convective nature of instability of the incompressible jet, the forcing at the inlet plane was turned off. The disturbances were gradually convected downstream, out of the computational domain. Next, two-dimensional heated, non-buoyant jets were studied numerically. The effects of the ratio of jet density to ambient density S, the velocity ratio R, and jet width W, on the near field behavior of an initial laminar jet and the regeneration mechanism of the self-sustaining vortices were explored. The theory based on domain of absolute/convective instability identifies these three parameters. No initial perturbation was necessary to start roll-up of the shear layer. For certain choices, e.g., S= 0.75, R = 20, W =10.5, self-sustaining oscillations appeared spontaneously, and these cycles repeated for very long simulation intervals. Waviness on the jet shear layers grow and roll-up into vortices as in constant density shear layers. But unlike the incompressible plane jet, these vortices grow much larger and mixes more with the surrounding fluid. As these vortices evolve, packets of fluid break away as trailing legs similar to side jet expulsions observed in round jets and plumes. The growing vortices disturb the upstream shear layer. Consistently with linear theory, which predicts absolute instability for these parameters, these disturbances are able to grow and roll up. If these disturbances travelled faster than the downstream vortices, it would not be possible for the cycle to repeat. With sufficient shear between the co-flowing streams (R not too small), the entire regeneration process was found to begin from roughly the same streamwise location. Furthermore, it is the symmetric, varicose mode which occurs. At a slightly larger density ratio (S = 0.8, R = 10), self-sustaining oscillations appeared, but each new cycle began slightly farther downstream. It seems likely that these values are close to the boundary in parameter space between self-sustained oscillatory and convectively unstable behaviors. Jet width also influences the selection of these two behaviors. When jet width was reduced, W = 6, even for S = 0.75,R = 20, each new cycle began to shift downstream. For larger jet width (W = 12.3), self-sustaining oscillations occur but the response is now as an asymmetric sinuous mode after a short initial varicose mode. The detailed processes that have now been revealed in plane jets should serve as guidelines for the study of such processes in the technologically more important round jets.
160

A numerical study of pulse-combustor jet impingement heat transfer

Liewkongsataporn, Wichit 19 March 2008 (has links)
A pulsating jet generated by a pulse combustor has been experimentally demonstrated as a technique for impingement heat transfer enhancement relative to a steady jet. The enhancement factor was as high as 2.5. Despite such potential, further studies of this technique have been limited, let alone industrial applications. The ultimate goal of the Pulsed Air Drying project at the Institute of Paper Science and Technology is to develop this technique to commercialization for industrial applications such as paper drying. The main objective of the research in this dissertation is to provide a fundamental basis for the development of the technology. Using CFD simulations, the research studied the characteristics of pulsating single-slot-nozzle jet impingement flows and heat transfer on stationary and moving surfaces. In addition, in order to understand basic flow characteristics of pulse-combustor jets, a simplified model of Helmholtz pulse combustors was developed. The model was used to recommend a strategy to generate a pulsating jet having large amplitude of velocity oscillation. And based on this model, pulsating jets in the simulations were characterized as those at the tailpipe exit of a pulse combustor. The impingement conditions were similar to those in conventional impingement hoods for paper drying. Parameter studies included the effects of jet velocity oscillation amplitude, pulsation frequency, mean jet velocity, tailpipe width, and impingement surface velocity. Simulation results showed that the amplitude of jet velocity oscillation was the most important parameter for heat transfer enhancement, in which two mechanisms were identified: high impinging jet velocity during the positive cycle and strong re-circulating flows in the impingement zone during the negative cycle of jet velocity oscillation. As for the improvement by the pulsating jets relative to steady jets, the maximum heat transfer enhancement and energy saving factors were 1.8 and 3.0, respectively, which were very encouraging for further development of the technology.

Page generated in 0.096 seconds