Spelling suggestions: "subject:"deux infinis"" "subject:"deux confinis""
1 |
Complexité dans les Jeux Infinis sur les Graphes et les Réseaux de Contraintes Temporelles / Complexity in Infinite Games on Graphs and Temporal Constraint NetworksComin, Carlo 20 March 2017 (has links)
Cette thèse porte sur un certain nombre de problèmes algorithmiques motivés par la planification temporelle automatisée et la vérification formelle des systèmes réactifs et finis. Nous nous sommes concentrés sur les méthodes théoriques des jeux pour obtenir de nouvelles connaissances, des limites de complexité améliorées et des algorithmes plus rapides pour les modèles suivants: réseaux temporels hyper, réseaux conditionnels Simples / Hyper temporels, jeux de mise à jour, jeux Muller McNaughton et jeux Mean Payoff / This dissertation deals with a number of algorithmic problems motivated by automated temporal planning and formal verification of reactive and finite state systems. We focused on game theoretical methods to obtain novel insights, improved complexity bounds, and faster algorithms for the following models: Hyper Temporal Networks, Conditional Simple/Hyper Temporal Networks, Update Games, Muller McNaughton Games, and Mean Payoff Games
|
2 |
Information incomplète et regret interne en prédiction de suites individuellesStoltz, Gilles 27 May 2005 (has links) (PDF)
Le domaine de recherche dans lequel s'inscrit ce travail de thèse est la théorie de la prédiction des suites individuelles. Cette dernière considère les problèmes d'apprentissage séquentiel pour lesquels on ne peut ou ne veut pas modéliser le problème de manière stochastique, et fournit des stratégies de prédiction très robustes. Elle englobe aussi bien des problèmes issus de la communauté du machine learning que de celle de la théorie des jeux répétés, et ces derniers sont traités avec des méthodes statistiques, incluant par exemple les techniques de concentration de la mesure ou de l'estimation adaptative. Les résultats obtenus aboutissent, entre autres, à des stratégies de minimisation des regrets externe et interne dans les jeux à information incomplète, notamment les jeux répétés avec signaux. Ces stratégies s'appliquent au problème d'ajustement séquentiel des prix de vente, ou d'allocation séquentielle de bande passante. Le regret interne est ensuite plus spécifiquement étudié, d'abord dans le cadre de l'investissement séquentiel dans le marché boursier, pour lequel des simulations sur des données historiques sont proposées, puis pour l'apprentissage des équilibres corrélés des jeux infinis à ensembles de stratégies convexes et compacts.
|
Page generated in 0.0287 seconds