• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation structurale du recrutement de la protéine JIP1 par la chaîne légère (KLC) de la kinésine1 / Structural characterization of JIP1 recruitment by kinesin1 light chain (KLC)

Nguyen, The Quyen 16 October 2017 (has links)
RésuméLes kinésines sont des moteurs moléculaires impliqués dans le transport intracellulaire de nombreux cargos au sein de la cellule. Bien que la motilité des kinésines soit bien comprise, les mécanismes moléculaires à la base du recrutement des cargos le sont beaucoup moins.La kinésine1 joue divers rôles dans les cellules neuronales, où elle contribue à l’organisation spatiale et temporelle de nombreux composants cellulaires. Elle jouerait un rôle dans différentes pathologies neurologiques, comme la maladie d’Alzheimer. Comprendre comment la kinésine1 reconnaît et interagit avec ses cargos est important pour déterminer son rôle, ainsi que celui de ses cargos, au niveau du fonctionnement des cellules normales et pathologiques. La kinésine1 est un hétérotétramère constitué de deux chaînes lourdes (KHC) et de deux chaînes légères (KLC) toutes deux étant capables de recruter des protéines cargos. L’une des premières protéines cargos à avoir été identifiée est JIP1 (JNK-interacting protein 1) qui est, entre autres: (i) une protéine d’échafaudage pour la voie de signalisation des MAP kinases et (ii) une protéine adaptatrice pour le transport de la protéine précurseur de l’amyloïde (APP) responsable de la maladie d’Alzheimer. Dans les deux cas, JIP1 régule des processus critiques au niveau de la cellule, ce qui en fait une protéine intéressante à étudier. Des premières études ont permis de mieux comprendre comment JIP1 est recrutée et transportée par la kinésine1. Cependant, le détail de l’interaction entre KLC et JIP1 n’est pas encore complètement décrit et donc compris.Objectifs : Mon travail de doctorat vise à caractériser au niveau moléculaire l’interaction entre KLC et JIP1. Pour ce faire, j’avais pour objectifs : 1) de caractériser les domaines d’interaction des deux protéines seules, 2) d’étudier la formation du complexe en solution par des approches biophysiques et 3) de déterminer la structure 3D du complexe par cristallographie.Résultats : Dans un premier temps, j’ai caractérisé le domaine TPR de KLC seul en contribuant entre autres au développement d’une boite à outils moléculaires. J’ai aussi participé à la détermination de deux structures cristallographiques du domaine TPR de KLC1/2 permettant de mettre en évidence la plasticité structurale de la 1ère hélice de ce domaine (Nguyen et al, soumis). Dans un second temps, j’ai mis en place les conditions d’expression et de purification du domaine PTB de JIP1 et mener la caractérisation structurale de ce domaine en solution. Bien que ce domaine de JIP1 ne soit pas nécessaire pour l’interaction avec KLC, j’ai pu étudier l’impact de sa présence au niveau du recrutement par KLC. Finalement, j’ai caractérisé le recrutement de JIP1 par KLC en confirmant tout d’abord un certain nombre d’information sur l’interaction entre le domaine TPR de KLC et la région C-terminale (Cter) de JIP1 au niveau moléculaire. Les nombreux essais de cristallisation que j’ai menés n’ont pas permis d’obtenir des cristaux du complexe KLC:JIP1. J’ai cependant pu cartographier de façon précise la zone d’interaction de JIP1-Cter avec le domaine TPR de KLC en employant les différents outils de KLC disponibles pour déterminer par calorimétrie leur affinité avec JIP1-Cter (Nguyen et al., en préparation).Conclusion : Ainsi, mon travail de doctorat a permis de mieux comprendre 1) la versatilité structurale du domaine TPR de KLC, 2) l’impact du domaine PTB de JIP1 pour son recrutement par KLC et 3) le mode d’interaction de JIP1 par KLC. Sur la base de ces données, je discuterai les bases structurales du mode d’interaction de KLC avec JIP1 et le comparerai à celui de KLC avec les cargos à motif WD, comme SKIP et Alcadéine-α. / AbstractKinesins are molecular motors involved in the intracellular transport of many cargos within the cell. Although the motility of kinesins is well understood, the molecular mechanisms underlying cargo recruitment are much less so.Kinesin1 plays various roles in neuronal cells, where it contributes to the spatial and temporal organization of many cellular components. It would play a role in various neurological pathologies, such as Alzheimer's disease. Understanding how kinesin1 recognizes and interacts with its cargos is important to decorticate its role, as well as that of its cargos, in normal and pathological cells. Kinesin1 is a heterotetramer consisting of two heavy chains (KHC) and two light chains (KLC), both of which are capable of recruiting cargo proteins. One of the first cargo proteins to have been identified is JIP1 (JNK-interacting protein 1) which is: (i) a scaffold protein for the signaling pathway of MAP kinases and (ii) an adaptor protein for transporting amyloid precursor protein (APP) responsible for Alzheimer's disease. In both cases, JIP1 regulates critical processes at the cell level, making it an interesting protein to study. Early studies have led to a better understanding of how JIP1 is recruited and transported by kinesin1. However, the detail of the interaction between KLC and JIP1 is not yet fully described and therefore understood.Objectives: My doctoral work aims at characterizing at the molecular level the interaction between KLC and JIP1. To do this, I had the following objectives: 1) to characterize the interaction domains of the two proteins alone, 2) to study the formation of the complex in solution by biophysical approaches, and 3) to determine the 3D structure of the complex by crystallography.Results: Initially, I characterized the TPR domain of KLC alone, contributing among others to the development of a molecular toolbox. I also participated in the determination of two crystallographic structures of the TPR domain of KLC1/2 that highlights the structural plasticity of the first helix of this domain (Nguyen et al, submitted). In a second step, I set up the conditions for the expression and purification of the PTB domain of JIP1 and carry out the structural characterization of this domain in solution. Although this domain of JIP1 is not necessary for interaction with KLC, I studied the impact of its presence on recruitment by KLC. Finally, I characterized the recruitment of JIP1 by KLC by confirming a number of information on the interaction between the KLC-TPR and the C-terminal region (Cter) of JIP1 at the molecular level. The numerous crystallization tests that I carried out did not make it possible to obtain crystals of the KLC: JIP1 complex. However, I was able to precisely map the interaction zone of JIP1-Cter with the KLC-TPR domain using the various KLC tools available by determining by ITC their affinity with JIP1-Cter (Nguyen et al., In preparation ).Conclusion: Thus, my PhD work allowed to better understand 1) the structural versatility of the KLC-TPR domain, 2) the impact of the JIP1-PTB domain for its KLC recruitment, and 3) the interaction mode of JIP1 by KLC . On the basis of these data, I will discuss the structural basis of the mode of binding of KLC with JIP1 and compare it with that of KLC with WD-motif cargo, such as SKIP and Alcadein-α.
2

Role of JIP1-JNK Signaling in Beta-Cell Function and Autophagy

Barutcu, Seda 19 January 2018 (has links)
Proper functioning of endocrine cells is crucial for organismal homeostasis. The underlying mechanisms that fine-tune the amount, and the timing of hormone secretion are not clear. JIP1 / MAPK8IP1 (JNK interacting protein 1) is a scaffold protein that mediates cellular stress response, and is highly expressed in endocrine cells, including insulin secreting b-cells in pancreas islets. However, the role of JIP1 in b-cells is unclear. This study demonstrates that b-cell specific Jip1 ablation results in decreased glucose-induced insulin secretion, without a change in Insulin1 and Insulin2 gene expression. Inhibition of both JIP1-kinesin interaction, and JIP1-JNK interaction by genetic mutations also resulted in decreased insulin secretion, suggesting that JIP1 may mediate insulin vesicle trafficking through interacting with kinesin and JNK. Autophagy is a cellular recycling mechanism and implicated in the b-cell function. Both JIP1 and JNK are proposed to regulate autophagy pathway. However, it is unclear whether JNK plays a role in the promotion or suppression of autophagy. The findings of this study show that JNK is not essential for autophagy induction, but can regulate autophagy in a cell and context specific manner. The results in this thesis implies a mechanism that link cellular trafficking and stress signaling pathways in the regulated hormone secretion. In addition to the known role of JIP1 in metabolism and insulin resistance, this finding may also be relevant to endocrine pathologies.
3

Étude du rôle de la phosphatase DUSP1 dans la régulation de la réponse immunitaire innée autonome dans les cellules épithéliales pulmonaires lors de l'infection par le virus respiratoire syncytial et le virus Sendai

Robitaille, Alexa 08 1900 (has links)
No description available.
4

Characterization of JNK Binding Proteins: A Dissertation

Rogers, Jeffrey Scott 27 July 2005 (has links)
The JNK signal transduction pathway mediates a broad, complex biological process in response to inflammatory cytokines and environmental stress. These responses include cell survival and apoptosis, proliferation, tumorigenesis and the immune response. The divergent cellular responses caused by the JNK signal transduction pathway are often regulated by spatial and cell type contexts, as well as the interaction with other cellular processes. The discovery of additional components of the JNK signal transduction pathway are critical to elucidate the stress response mechanisms in cells. This thesis first discusses the cloning and characterization of two novel members of the JNK signal transduction pathway. JIP1 and JMP1 were initially identified from a murine embryo library through a yeast Two-Hybrid screen to identify novel JNK interacting proteins. Full length cDNAs of both genes were cloned and analyzed. JIP1 represents the first member of the JIP group of JNK scaffold proteins which were characterized. The JNK binding domain (JBD) of JIP1 matches the D-domain consensus of other JNK binding proteins, and it demonstrates JNK binding both in vitro and in vivo. This JNK binding was demonstrated to inhibit JNK signal transduction and over-expression of JIP1 inhibits the JNK mediated pre-B cell transformation by bcr-abl. Over-expressed JIP1 also sequesters JNK in the cytoplasm, which may be a mechanism of the inhibition of JNK signaling. A new, high-resolution digital imaging microscopy technique using deconvolution demonstrated the absence of JNK1 in the nucleus of co-transfected JIP1 and JNK1 cells. The other protein discussed in this thesis is JMP1, a novel JNK binding, microtubule co-localized protein. There is a JBD in the JMP1 carboxyl end and a consensus D-domain within this region. The JMP1 JBD demonstrates an increased association with phospho-JNK from UV irradiated cells compared to un-irradiated cells in vivo. JMP1 also has 12 WD-repeat motifs in its amino terminal end which are required for microtubule co-localization. JMP1 demonstrates a cell cycle specific localization at the mitotic spindle poles. This co-localization is dependent on intact microtubules and the amino-terminal WD-repeats are required for this localization. JMP1 mRNA is highly expressed in testis tissues. Immunocytochemistry on murine testis sections using an affinity purified anti-JMP1 antibody demonstrates JMP1 protein in the lumenal compartment of the seminiferous tubules. JMP1 protein is expressed in primary and secondary spermatocytes, cells which are actively undergoing meiosis. The results obtained from the localization of JMP1 in meiotic spermatocytes led to an investigation of the roles of JNK signal transduction in the testis. The testis is an active region of cellular proliferation, apoptosis and differentiation, which make it an appealing model for studying JNK signal transduction. However, the roles JNK signaling have in the testis are poorly understood. I investigated the reproduction capability of Jnk3-/- male mice and discovered older Jnk3-/- males had a reduced capacity to impregnate females compared to younger animals and age-matched wild type controls. The testis morphology and sperm motility of these animals were similar to wild-type animals, and there was no alteration of apoptosis in the testis. The final section of this thesis involves the study of this breeding defect and investigating for cellular defects that might account for this age-related Jnk3-/- phenotype.

Page generated in 0.04 seconds