• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Jitter measurement of high-speed digital signals using low-cost signal acquisition hardware and associated algorithms

Choi, Hyun 06 July 2010 (has links)
This dissertation proposes new methods for measuring jitter of high-speed digital signals. The proposed techniques are twofold. First, a low-speed jitter measurement environment is realized by using a jitter expansion sensor. This sensor uses a low-frequency reference signal as compared to high-frequency reference signals required in standard high-speed signal jitter measurement instruments. The jitter expansion sensor generates a low-speed signal at the output, which contains jitter content of the original high-speed digital signal. The low-speed sensor output signal can be easily acquired with a low-speed digitizer and then analyzed for jitter. The proposed low-speed jitter measurement environment using the jitter expansion sensor enhances the reliability of current jitter measurement approaches since low-speed signals used as a reference signal and a sensor output signal can be generated and applied to measurement systems with reduced additive noise. The second approach is direct digitization without using a sensor, in which a high-speed digital signal with jitter is incoherently sub-sampled and then reconstructed in the discrete-time domain by using digital signal reconstruction algorithms. The core idea of this technique is to remove the hardware required in standard sampling-based jitter measurement instruments for time/phase synchronization by adopting incoherent sub-sampling as compared to coherent sub-sampling and to reduce the need for a high-speed digitizer by sub-sampling a periodic signal over its many realizations. In the proposed digitization technique, the signal reconstruction algorithms are used as a substitute for time/phase synchronization hardware. When the reconstructed signal is analyzed for jitter in digital post-processing, a self-reference signal is extracted from the reconstructed signal by using wavelet denoising methods. This digitally generated self-reference signal alleviates the need for external analog reference signals. The self-reference signal is used as a timing reference when timing dislocations of the reconstructed signal are measured in the discrete-time domain. Various types of jitter of the original high-speed reference signals can be estimated using the proposed jitter analysis algorithms.

Page generated in 0.0636 seconds