• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical properties of successive ocean wave parameters

Wist, Hanne Therese January 2003 (has links)
<p>For random waves the free surface elevation can be described by a number of individual wave parameters. The main objective of this work has been to study the statistical properties of individual parameters in successive waves; the wave crest height, the wave height and the wave period.</p><p>In severe sea states the wave crest heights exhibit a nonlinear behavior, which must be reflected in the models. An existing marginal distribution that uses second order Stokes-type nonlinearity is transformed to a two-dimensional distribution by use of the two–dimensional Rayleigh distribution. This model only includes sum frequency effects. A two-dimensional distribution is also established by transforming a second order model including both sum and different frequency effects. Both models are based on the narrow-band assumption, and the effect of finite water depth is included. A parametric wave crest height distribution proposed by Forristall (2000) has been extended to two dimensions by transformation of the two-dimensional Weibull distribution. </p><p>Two successive wave heights are modeled by a Gaussian copula, which is referred to as the Nataf model. Results with two initial distributions for the transformation are presented, the Næss (1985) model and a two-parameter Weibull distribution, where the latter is in best agreement with data. The results are compared with existing models. The Nataf model has also been used for modeling three successive wave heights. Results show that the Nataf transformation of three successive wave heights can be approximated by a first order autoregression model. This means that the distribution of the wave height given the previous wave height is independent of the wave heights prior to the previous wave height. The simulation of successive wave heights can be done directly without simulating the time series of the complete surface elevation. </p><p>Successive wave periods are modeled with the Nataf transformation by using a two-parameter Weibull distribution and a generalized Gamma distribution as the initial distribution, where the latter is in best agreement with data. Results for the marginal and two-dimensional distributions are compared with existing models. In practical applications, it is often of interest to consider successive wave periods with corresponding wave heights exceeding a certain threshold. Results show that the distribution for successive wave periods when the corresponding wave heights exceed the root-mean-square value of the wave heights can be approximated by a multivariate Gaussian distribution. When comparing the results with data, a long time series is needed in order to obtain enough data cases. Results for three successive wave periods are also presented. </p><p>The models are compared with field data from the Draupner field and the Japan Sea, and with laboratory data from experiments at HR Wallingford. In addition, data from numerical simulations based on second order wave theory, including both sum and frequency effects, are included.</p>
2

Statistical properties of successive ocean wave parameters

Wist, Hanne Therese January 2003 (has links)
For random waves the free surface elevation can be described by a number of individual wave parameters. The main objective of this work has been to study the statistical properties of individual parameters in successive waves; the wave crest height, the wave height and the wave period. In severe sea states the wave crest heights exhibit a nonlinear behavior, which must be reflected in the models. An existing marginal distribution that uses second order Stokes-type nonlinearity is transformed to a two-dimensional distribution by use of the two–dimensional Rayleigh distribution. This model only includes sum frequency effects. A two-dimensional distribution is also established by transforming a second order model including both sum and different frequency effects. Both models are based on the narrow-band assumption, and the effect of finite water depth is included. A parametric wave crest height distribution proposed by Forristall (2000) has been extended to two dimensions by transformation of the two-dimensional Weibull distribution. Two successive wave heights are modeled by a Gaussian copula, which is referred to as the Nataf model. Results with two initial distributions for the transformation are presented, the Næss (1985) model and a two-parameter Weibull distribution, where the latter is in best agreement with data. The results are compared with existing models. The Nataf model has also been used for modeling three successive wave heights. Results show that the Nataf transformation of three successive wave heights can be approximated by a first order autoregression model. This means that the distribution of the wave height given the previous wave height is independent of the wave heights prior to the previous wave height. The simulation of successive wave heights can be done directly without simulating the time series of the complete surface elevation. Successive wave periods are modeled with the Nataf transformation by using a two-parameter Weibull distribution and a generalized Gamma distribution as the initial distribution, where the latter is in best agreement with data. Results for the marginal and two-dimensional distributions are compared with existing models. In practical applications, it is often of interest to consider successive wave periods with corresponding wave heights exceeding a certain threshold. Results show that the distribution for successive wave periods when the corresponding wave heights exceed the root-mean-square value of the wave heights can be approximated by a multivariate Gaussian distribution. When comparing the results with data, a long time series is needed in order to obtain enough data cases. Results for three successive wave periods are also presented. The models are compared with field data from the Draupner field and the Japan Sea, and with laboratory data from experiments at HR Wallingford. In addition, data from numerical simulations based on second order wave theory, including both sum and frequency effects, are included.
3

Skip-free markov processes: analysis of regular perturbations

Dendievel, Sarah 19 June 2015 (has links)
A Markov process is defined by its transition matrix. A skip-free Markov process is a stochastic system defined by a level that can only change by one unit either upwards or downwards. A regular perturbation is defined as a modification of one or more parameters that is small enough not to change qualitatively the model.<p>This thesis focuses on a category of methods, called matrix analytic methods, that has gained much interest because of good computational properties for the analysis of a large family of stochastic processes. Those methods are used in this work in order i) to analyze the effect of regular perturbations of the transition matrix on the stationary distribution of skip-free Markov processes; ii) to determine transient distributions of skip-free Markov processes by performing regular perturbations.<p>In the class of skip-free Markov processes, we focus in particular on quasi-birth-and-death (QBD) processes and Markov modulated fluid models.<p><p>We first determine the first order derivative of the stationary distribution - a key vector in Markov models - of a QBD for which we slightly perturb the transition matrix. This leads us to the study of Poisson equations that we analyze for finite and infinite QBDs. The infinite case has to be treated with more caution therefore, we first analyze it using probabilistic arguments based on a decomposition through first passage times to lower levels. Then, we use general algebraic arguments and use the repetitive block structure of the transition matrix to obtain all the solutions of the equation. The solutions of the Poisson equation need a generalized inverse called the deviation matrix. We develop a recursive formula for the computation of this matrix for the finite case and we derive an explicit expression for the elements of this matrix for the infinite case.<p><p>Then, we analyze the first order derivative of the stationary distribution of a Markov modulated fluid model. This leads to the analysis of the matrix of first return times to the initial level, a charactersitic matrix of Markov modulated fluid models.<p><p>Finally, we study the cumulative distribution function of the level in finite time and joint distribution functions (such as the level at a given finite time and the maximum level reached over a finite time interval). We show that our technique gives good approximations and allow to compute efficiently those distribution functions.<p><p><p>----------<p><p><p><p><p><p>Un processus markovien est défini par sa matrice de transition. Un processus markovien sans sauts est un processus stochastique de Markov défini par un niveau qui ne peut changer que d'une unité à la fois, soit vers le haut, soit vers le bas. Une perturbation régulière est une modification suffisamment petite d'un ou plusieurs paramètres qui ne modifie pas qualitativement le modèle.<p><p>Dans ce travail, nous utilisons des méthodes matricielles pour i) analyser l'effet de perturbations régulières de la matrice de transition sur le processus markoviens sans sauts; ii) déterminer des lois de probabilités en temps fini de processus markoviens sans sauts en réalisant des perturbations régulières. <p>Dans la famille des processus markoviens sans sauts, nous nous concentrons en particulier sur les processus quasi-birth-and-death (QBD) et sur les files fluides markoviennes. <p><p><p><p>Nous nous intéressons d'abord à la dérivée de premier ordre de la distribution stationnaire – vecteur clé des modèles markoviens – d'un QBD dont on modifie légèrement la matrice de transition. Celle-ci nous amène à devoir résoudre les équations de Poisson, que nous étudions pour les processus QBD finis et infinis. Le cas infini étant plus délicat, nous l'analysons en premier lieu par des arguments probabilistes en nous basant sur une décomposition par des temps de premier passage. En second lieu, nous faisons appel à un théorème général d'algèbre linéaire et utilisons la structure répétitive de la matrice de transition pour obtenir toutes les solutions à l’équation. Les solutions de l'équation de Poisson font appel à un inverse généralisé, appelé la matrice de déviation. Nous développons ensuite une formule récursive pour le calcul de cette matrice dans le cas fini et nous dérivons une expression explicite des éléments de cette dernière dans le cas infini.<p>Ensuite, nous analysons la dérivée de premier ordre de la distribution stationnaire d'une file fluide markovienne perturbée. Celle-ci nous amène à développer l'analyse de la matrice des temps de premier retour au niveau initial – matrice caractéristique des files fluides markoviennes. <p>Enfin, dans les files fluides markoviennes, nous étudions la fonction de répartition en temps fini du niveau et des fonctions de répartitions jointes (telles que le niveau à un instant donné et le niveau maximum atteint pendant un intervalle de temps donné). Nous montrerons que cette technique permet de trouver des bonnes approximations et de calculer efficacement ces fonctions de répartitions. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
4

以特徵向量法解條件分配相容性問題 / Solving compatibility issues of conditional distributions by eigenvector approach

顧仲航, Ku, Chung Hang Unknown Date (has links)
給定兩個隨機變數的條件機率矩陣A和B,相容性問題的主要課題包 含:(一)如何判斷他們是否相容?若相容,則如何檢驗聯合分配的唯一性 或找出所有的聯合分配;(二)若不相容,則如何訂定測量不相容程度的方 法並找出最近似聯合分配。目前的文獻資料有幾種解決問題的途徑,例 如Arnold and Press (1989)的比值矩陣法、Song et al. (2010)的不可約 化對角塊狀矩陣法及Arnold et al. (2002)的數學規劃法等,經由這些方法 的啟發,本文發展出創新的特徵向量法來處理前述的相容性課題。 當A和B相容時,我們觀察到邊際分配分別是AB′和B′A對應特徵值1的 特徵向量。因此,在以邊際分配檢驗相容性時,特徵向量法僅需檢驗滿足 特徵向量條件的邊際分配,大幅度減少了檢驗的工作量。利用線性代數中 的Perron定理和不可約化對角塊狀矩陣的概念,特徵向量法可圓滿處理相 容性問題(一)的部份。 當A和B不相容時,特徵向量法也可衍生出一個測量不相容程度的簡單 方法。由於不同的測量方法可得到不同的最近似聯合分配,為了比較其優 劣,本文中提出了以條件分配的偏差加上邊際分配的偏差作為評量最近似 聯合分配的標準。特徵向量法除了可推導出最近似聯合分配的公式解外, 經過例子的驗證,在此評量標準下特徵向量法也獲得比其他測量法更佳的 最近似聯合分配。由是,特徵向量法也可用在處理相容性問題(二)的部份。 最後,將特徵向量法實際應用在兩人零和有限賽局問題上。作業研究的 解法是將雙方採取何種策略視為獨立,但是我們認為雙方可利用償付值表 所提供的資訊作為決策的依據,並將雙方的策略寫成兩個條件機率矩陣, 則賽局問題被轉換為相容性問題。我們可用廣義相容的概念對賽局的解進 行分析,並在各種測度下討論賽局的解及雙方的最佳策略。 / Given two conditional probability matrices A and B of two random variables, the issues of the compatibility include: (a) how to determine whether they are compatible? If compatible, how to check the uniqueness of the joint distribution or find all possible joint distributions; (b) if incompatible, how to measure how far they are from compatibility and find the most nearly compatible joint distribution. There are several approaches to solve these problems, such as the ratio matrix method(Arnold and Press, 1989), the IBD matrix method(Song et al., 2010) and the mathematical programming method(Arnold et al., 2002). Inspired by these methods, the thesis develops the eigenvector approach to deal with the compatibility issues. When A and B are compatible, it is observed that the marginal distributions are eigenvectors of AB′ and B′A corresponding to 1, respectively. While checking compatibility by the marginal distributions, the eigenvector approach only checks the marginal distributions which are eigenvectors of AB′ and B′A. It significantly reduces the workload. By using Perron theorem and the concept of the IBD matrix, the part (a) of compatibility issues can be dealt with the eigenvector approach. When A and B are incompatible, a simple way to measure the degree of incompatibility can be derived from the eigenvector approach. In order to compare the most nearly compatible joint distributions given by different measures, the thesis proposes the deviation of the conditional distributions plus the deviation of the marginal distributions as the most nearly compatible joint distribution assessment standard. The eigenvector approach not only derives formula for the most nearly compatible distribution, but also provides better joint distribution than those given by the other measures through the validations under this standard. The part (b) of compatibility issues can also be dealt with the eigenvector approach. Finally, the eigenvector approach is used in solving game problems. In operations research, strategies adopted by both players are assumed to be independent. However, this independent assumption may not be appropriate, since both players can make decisions through the information provided by the payoffs for the game. Let strategies of both players form two conditional probability matrices, then the game problems can be converted into compatibility issues. We can use the concept of generalized compatibility to analyze game solutions and discuss the best strategies for both players in a variety of measurements.

Page generated in 0.1218 seconds