• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 323
  • 1
  • Tagged with
  • 324
  • 324
  • 324
  • 303
  • 303
  • 303
  • 303
  • 220
  • 213
  • 205
  • 203
  • 201
  • 201
  • 201
  • 197
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Inferring ocean circulation during the last glacial maximum and last deglaciation using data and models

Amrhein, Daniel Edward 22 February 2017 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2016. / Ph. D. Joint Program in Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012 / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 179-192). / Since the Last Glacial Maximum (LGM, ~ 20,000 years ago) air temperatures warmed, sea level rose roughly 130 meters, and atmospheric concentrations of carbon dioxide increased. This thesis combines global models and paleoceanographic observations to constrain the ocean's role in storing and transporting heat, salt, and other tracers during this time, with implications for understanding how the modem ocean works and how it might change in the future. -- By combining a kinematic ocean model with "upstream" and "downstream" deglacial oxygen isotope time series from benthic and planktonic foraminifera, I show that the data are in agreement with the modem circulation, quantify their power to infer circulation changes, and propose new data locations. -- An ocean general circulation model (the MITgcm) constrained to fit LGM sea surface temperature proxy observations reveals colder ocean temperatures, greater sea ice extent, and changes in ocean mixed layer depth, and suggests that some features in the data are not robust. -- A sensitivity analysis in the MITgcm demonstrates that changes in winds or in ocean turbulent transport can explain the hypothesis that the boundary between deep Atlantic waters originating from Northern and Southern Hemispheres was shallower at the LGM than it is today. / by Daniel Edward Amrhein. / Ph. D.
132

The tectonics and three-dimensional structure of spreading centers--microearthquake studies and tomographic inversions / Tectonics and 3-D structure of spreading centers--microearthquake studies and tomographic inversions / Microearthquake studies and tomographic inversions, The tectonics and three-dimensional structure of spreading centers

Toomey, Douglas R January 1987 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1987. / Supervised by Mike Purdy, Sean C. Solomon. / Includes bibliographical references. / Two-thirds of the Earth's surface has been formed along a global system of spreading centers that are presently manifested in several different structural forms, including the classic rift valley of the Mid-Atlantic Ridge, the more morphologically subdued East Pacific Rise, and the pronounced en echelon structure of the Reykjanes Peninsula within southwestern Iceland. In this thesis, each of these different spreading centers is investigated with microearthquake studies or tomographic inversion of travel times. Results of these studies are used to constrain the spatial variability of physical properties and processes beneath the axis of spreading and, together with other observations, the temporal characteristics of crustal accretion and rifting. In Chapter 2 the theoretical basis of seismic body-wave travel-time tomography and techniques for the simultaneous inversion for hypocentral parameters and velocity structure are reviewed. A functional analysis approach assures that the theoretical results are independent of model parameterization. An important aspect of this review is the demonstration that travel time anomalies due to path and source effects are nearly independent. The discussion of the simultaneous inverse technique examines theoretically the dependence of tomographic images on the parameterization of the velocity model. In particular, the effects of parameterization on model resolution are examined, and it is shown that an optimum set of parameters averages velocity over localized volumes. Chapter 2 ends with the presentation of the results of tomographic inversions of synthetic data generated for a model of the axial magma chamber postulated to exist beneath the East Pacific Rise. These inversions demonstrate the power of the tomographic method for imaging three-dimensional structure on a scale appropriate to heterogeneity along a spreading ridge axis. Chapter 3 is the first of two chapters that present the results of a microearthquake experiment carried out within the median valley of the Mid-Atlantic Ridge near 230 N during a three week period in early 1982. In this chapter, the experiment site, the seismic network, the relocation of instruments by acoustic ranging, the hypocenter location method, and the treatment of arrival time data are described. Moreover, hypocentral parameters of the 26 largest microearthquakes are reported; 18 of these events have epicenters and focal depths which are resolvable to within ±1 km formal error at the 95% confidence level. Microearthquakes occur beneath the inner floor of the median valley and have focal depths generally between 5 and 8 km beneath the seafloor. Composite fault plane solutions for two spatially related groups of microearthquakes beneath the inner floor indicate normal faulting along fault planes that dip at angles of 300 or more. / Douglas Ray Toomey. / Ph.D.
133

The auditory system of the minke whale (Balaenoptera acutorostrata) : a potential fatty sound reception pathway in a mysticete cetacean / Potential fatty sound reception pathway in a mysticete cetacean

Yamato, Maya January 2012 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Despite widespread concerns about the effects of anthropogenic noise on baleen whales (suborder Mysticeti), we lack basic information about their auditory physiology for comprehensive risk assessments. Hearing ranges and sensitivities could be measured if customized equipment and methods were developed based on how baleen whales receive sound. However, sound reception pathways in baleen whales are currently unknown. This thesis presents an integrative approach to understanding hearing in baleen whales through dissections, biomedical imaging, biochemical analyses, and modeling sound propagation through a whale head using the Finite Element Method (FEM). We focused on the minke whale (Balaenoptera acutorostrata) because it is one of the smallest and most abundant mysticete species, reducing logistical difficulties for dissections and experiments. We discovered a large, well-formed fat body extending from the blubber region to the ears and contacting the ossicles. Although odontocetes, or toothed whales, are thought to use specialized "acoustic fats" for sound reception, no such tissues had been described for mysticetes to date. Our study indicates that the basic morphology and biochemical composition of the minke whale "ear fats" are very different from those of odontocete acoustic fats. However, the odontocete and mysticete fatty tissues share some characteristics, such as being conserved even during starvation, containing fewer dietary signals compared to blubber, and having well-defined attachments to the tympano-periotic complex, which houses the middle and inner ears. FE models of the whale head indicated that the ear fats caused a slight increase in the total pressure magnitude by the ears, and this focusing effect could be attributed to the low density and low sound speed of the ear fats in the models. Fatty tissues are known to have lower densities and sound speeds than other types of soft tissues, which may explain why they are an important component of the auditory system of odontocetes, and perhaps mysticete cetaceans as well. In an aquatic habitat where the pinna and air-filled ear canal are no longer effective at collecting and focusing so'und towards the ears, we propose that both odontocete and mysticete cetaceans have incorporated fatty tissues into their auditory systems for underwater sound reception. / by Maya Yamato. / Ph.D.
134

Spatial modulation in the underwater acoustic communication channel / Spatial modulation in the UACC

Kilfoyle, Daniel B. (Daniel Brian) January 2000 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography and Oceanographic Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2000. / Vita. / Includes bibliographical references (leaves 180-181). / A modulation technique for increasing the reliable data rate achievable by an underwater acoustic communication system is presented and demonstrated. The technique, termed spatial modulation, seeks to control the spatial distribution of signal energy such that multiple parallel communication channels are supported by the single, physical ocean channel. Results from several experiments successfully demonstrate higher obtainable data rates and power throughput. Given a signal energy constraint, a communication architecture with access to parallel channels will have increased capacity and reliability as compared to one with access to a single channel. Assuming the use of multiple element spatial arrays at both the transmitter and receiver, an analytic framework is developed that allows a multiple input, multiple output physical channel to be transformed into a set of virtual parallel channels. The continuous time, vector singular value decomposition is the primary vehicle for this transformation. Given knowledge of the channel impulse responses and assuming additive, white Gaussian noise as the only interference, the advantages of using spatial modulation over a deterministic channel may be exactly computed. Improving performance over an ensemble of channels using spatial modulation is approached by defining and then optimizing various average performance metrics including average signal to noise ratio, average signal to noise plus interference ratio, and minimum square error. Several field experiments were conducted. Detailed channel impulse response measurements were made enabling application of the decomposition methodology. The number, strength, and stability of the available parallel channels were analyzed. The parallel channels were readily interpreted in terms of the underlying sound propagation field. Acoustic communication tests were conducted comparing conventional coherent modulation to spatial modulation. In one case, a reliable data rate of 24000 bits per second with a 4 kHz bandwidth signal was achieved with spatial modulation when conventional signaling could not achieve that rate. In another test, the benefits of spatial modulation for a horizontally distributed communication system, such as an underwater network with autonomous underwater vehicles, were validated. / by Daniel Brian Kilfoyle. / Ph.D.
135

Thermally driven circulation / Circulation, Thermally driven

Nelken, Haim January 1987 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1987. / Includes bibliographical references (leaves 181-186). / Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a rigid insulating basin. In addition to the traditional eddy viscosity and diffusivity, turbulent processes are also included by a convective overturning adjustment at locations where the local density field is unstable. Two classes of problems are treated. The first is the large scale meridional pattern of a fluid in an annulus. The detailed treatment is carried out in two steps. In the beginning (chapter 2) it is assumed that the fluid is very diffusive, hence, to first approximation no flow field is present. It is found that the convective overturning adjustment changes the character of the stratification in all the regions that are cooled from the top, resulting in a temperature field that is nearly depth independent in the northernmost latitudes. The response to a seasonal cycle in the forcing, and the differences between averaging the results from the end of each season compared to driving the fluid by a mean forcing are analyzed. In particular, the resulting sea surface temperature is warmer in the former procedure. This observation is important in models where the heat flux is sensitive to the gradient of air to sea surface temperatures. The analysis of the problem continues in chapter 5 where the contribution of the flow field is included in the same configuration. The dimensionless parameter controlling the circulation is now the Rayleigh number, which is a measure of the relative importance of gravitational and viscous forces. The effects of the convective overturning adjustment is investigated at different Rayleigh numbers. It is shown that not only is the stratification now always stable, but also that the vigorous vertical mixing reduces the effective Rayleigh number; thereby the flow field is more moderate, the thermocline deepens, and the horizontal surface temperature gradients are weaker. The interior of the fluid is colder compared to cases without convective overturning, and, because the amount of heat in the system is assumed to be fixed, the surface temperature is warmer. The fluid is not only forced by a mean heat flux, or a seasonally varying one, but its behavior under permanent winter and summer conditions is also investigated. A steady state for the experiments where the net heat flux does not vanish is defined as that state where the flow field and temperature structure are not changing with time except for an almost uniform temperature decrease or increase everywhere. It is found that when winter conditions prevail the circulation is very strong, while it is rather weak for continuous summer forcing. In contrast to those results, if a yearly cycle is imposed, the circulation tends to reach a minimum in the winter time and a maximum in the summer. This suggests that, depending on the Rayleigh number, there is a phase leg of several months between the response of the ocean and the imposed forcing. Differences between the two averaging procedures mentioned before are also observed when the flow field is present, especially for large Rayleigh numbers. The circulation is found to be weaker and the sea surface temperature colder in the mean of the seasonal realizations compared to the steady state derived by the mean forcing. As an extension to the numerical results, an analytic model is presented in chapter 4 for a similar annular configuration. / by Haim Nelken. / Ph.D.
136

Radium isotopes and radon-222 as tracers of sediment-water interaction in Arctic coastal and lacustrine environments

Dabrowski, Jessica Stephanie. January 2020 (has links)
Thesis: S.M., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2020 / Cataloged from student-submitted PDF of thesis. / Includes bibliographical references. / Arctic marine and lacustrine systems are experiencing rapid warming due to climate change. These changes are especially important at the interface between sediments and surface waters because they are hotspots for biogeochemical transformations such as redox reactions, nutrient consumption and regeneration, organic matter leaching and degradation, and mineral weathering. Radium isotopes (²²³Ra, ²²⁴Ra, ²²⁶Ra, ²²⁸Ra) and radon-222, naturally occurring radioactive isotopes produced in sediments, are well-suited as tracers of nutrients, trace metals, and organic matter cycling processes at the sediment-water interface. In this thesis, I have applied radon-222 and the quartet of radium isotopes to study fundamental processes in subarctic lakes and on the Arctic continental shelf. First, radon-222 is used to quantify groundwater discharge into a shallow, tundra lake on the Yukon-Kuskokwim Delta in Alaska in summer of 2017. / Radon-derived groundwater fluxes were then paired with methane (CH₄) measurements to determine delivery rates of methane into the lake via groundwater. Groundwater CH₄ fluxes significantly exceeded diffusive air-water fluxes from the lake to the atmosphere, suggesting that groundwater is an important source of CH₄ to Arctic lakes and may drive observed CH₄ emissions. Higher CH₄ emissions were observed compared to those reported previously in high latitude lakes, like due to higher CH₄ concentrations in groundwater. These findings indicate that deltaic lakes across warmer permafrost regions may act as important hotspots for methane release across Arctic landscapes. Then, the quartet of radium isotopes is used to study the impacts of storms and sea ice formation as drivers of sediment-water interaction on the Alaskan Beaufort shelf. / The timeseries presented in this study is among the first to document the combined physical and chemical signals of winter water formation in the Beaufort Sea, made possible by repeat occupations of the central Beaufort shelf. Radium measurements are combined with inorganic nitrogen and hydrographic measurements to elucidate the episodic behavior of winter water formation and its ability to drive exchange with bottom sediments during freeze-up. / by Jessica Stephanie Dabrowski. / S.M. / S.M. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)
137

Analysis and interpretation of tidal currents in the coastal boundary layer

May, Paul Wesley, 1950- January 1979 (has links)
Thesis (Sc. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences and the Dept. of Meteorology; and the Woods Hole Oceanographic Institution), 1979. / Vita. Also issued in leaves. / Includes bibliographical references (p. [191]-197). / Concern with the impact of human activities on the coastal region of the world's oceans has elicited interest in the so-called "coastal boundary layer"-that band of water adjacent to the coast where ocean currents adjust to the presence of a boundary. Within this zone, roughly 10 km wide, several physical processes appear to be important. One of these, the tides, is of particular interest because their deterministic nature allows unusually thorough analysis from short time series, and because they tend to obscure the other processes. The Coastal Boundary Layer Transect (COBOLT) experiment was conducted within 12 km of the south shore of Long Island, New York to elucidate the characteristics of the coastal boundary layer in the Middle Atlantic Bight. Analysis of data from this experiment shows that 35% of the kinetic energy of currents averaged over the 30 m depth are due to the semidiurnal and diurnal tides. The tidal ellipses, show considerable vertical structure. Near-surface tidal ellipses rotate in the clockwise direction for semidiurnal and diurnal tides, while near-bottom ellipses rotate in the counterclockwise direction for the semidiurnal tide. The angle between the major axis of the ellipse and the local coastline decreases downward for semidiurnal and increases downward for diurnal tides. The major axis of the tidal ellipse formed from the depth averaged semidiurnal currents is not parallel to the local shoreline but is oriented at an angle of -15 degrees. This orientation "tilt" is a consequence of the onshore flux of energy which is computed to be about 800 watts/m. A constant eddy viscosity model with a slippery bottom boundary condition reproduces the main features observed in the vertical structure of both semidiurnal and diurnal tidal ellipses. Another model employing long, rotational, gravity waves (Sverdrup waves) and an absorbing coastline explains the ellipse orientations and onshore energy flux as a consequence of energy dissipation in shallow water. Finally, an analytical model with realistic topography suggests that tidal dissipation may occur very close (2-3 km) to the shore. Internal tidal oscillations primarily occur at diurnal frequencies in the COBOLT data. Analysis suggests that this energy may be Doppler-shifted to higher frequencies by the mean currents of the coastal region. These motions are trapped to the shore and are almost exclusively first baroclinic mode internal waves. / by Paul W. May. / Sc.D.
138

The gravity field and plate boundaries in Venezuela

Folinsbee, Robert Allin January 1972 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences and the Dept. of Meteorology; and the Woods Hole Oceanographic Institution), 1972. / Includes bibliographical references (p. 153-159). / Free-air and simple Bouguer anomaly maps of the Venezuelan continental margin (from 60°W to 72°W and from 7°N to 13°N) are presented. The major features of the free-air map are: the large lows associated with the deep sedimentary basins, -200 mgal in the Eastern Venezuela basin and -164 mgal in the Maracaibo basin; the high of greater than 300 mgal over the Venezuelan Andes; and a belt of highs associated with the offshore islands extending from Blanquilla to Curacao and then over the Guajira peninsula, where they terminate. The Bouguer anomaly map shows a large low (-196 mgal) over the Eastern Venezuela basin and relative minimums over the coastal mountains. A minimum associated with the Venezuelan Andes is shifted to the northwest of the topographic axis and lies over the flank of the Andes and part of the Maracaibo basin. Using the gravity data, structural sections were constructed for a series of profiles across the Venezuelan Andes and Caribbean mountains. They show that there is no light.crustal root under the Andes, the relative mass excess is as much as 600 kg/cm2 , and that there is an excess of low density material under the Maracaibo basin. This appears to be caused by a combination of a southeastward dipping shear zone in the lithosphere under the basin-mountain boundary and a component of compressive stress perpendicular to this zone, both of which have resulted in the uplift of the crust under the Andes, and downwarp under the basin. The apparent flexural rigidity of the lithosphere under the Maracaibo basin is 0.6 x 10 newton-m, a normal value for lithosphere deformations of Miocene age. The Caribbean mountains have a light crustal root which has been formed by the sliding of blocks of crustal material from the north over the rocks to the south, and perhaps by the under thrusting of oceanic crust under the continental crust. This under thrusting may have been a result of the formation of a downgoing slab of lithosphere along the Venezuelan continental margin during the late Cretaceous. The downgoing slab may have existed until mid-Eocene time. The gravity minimum over the Eastern Venezuela basin is due to the down warping of lighter crustal material into the higher density mantle. This may be a result of compression from the north along a north-south direction causing down buckling buckling of the lithosphere. The present deformation along the northern boundary appears to be due to differences in relative motion between the North and South American plates. Because the Caribbean mountains are partially isostatically compensated, while the Venezuelan Andes are above isostatic equilibrium, this suggests that the relative motion of the Caribbean plate with respect to the South American plate is eastward. The compressive stress across the boundary in the region of the Venezuelan Andes is probably greater than the compressive stress across the Caribbean mountains. / by Robert Allin Folinsbee. / Ph.D.
139

Vertical flux, ecology and dissolution of radiolaria in tropical oceans : implications for the silica cycle

Takahashi, Kozo January 1982 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1982. / "November 1981." Vita. / Includes bibliographical references. / Radiolarians which settle through the oceanic water column were recovered from three stations (western Tropical Atlantic-Station E, central Tropical Pacific-P1 and Panama Basin-PB) using PARFLUX sediment traps in moored arrays at several depths. The taxonomic diversities of the radiolarian assemblages in the sediment traps were very high. A total of 420 taxa, including 23 newly identified taxa, were found at the three stations; of these, 208 taxa were found at station E. The polycystine radiolarians generally reach the sea floor with little change in abundance or species composition, although slight skeletal dissolution occurs throughout their descent. The phaeodarian radiolarians, on the other hand, are largely dissolved within the water column; only a few species reach the sea-floor and these dissolve rapidly at the sediment-water interface. Most radiolarian skeletons sink as individuals through deep water columns without being incorporated into large biogenic aggregates. Because significant numbers of nassellarian and phaeodarian species are deep-water dwelling forms the diversity index of radiolarians increases with increasing depth in the mesopelagic zone. The vertical flux of the total radiolarians arriving at the trap depths (in x 103 individuals/m2/day) ranged from 16-24 (E), 0.6-17 (Pl), and 29-53 (PB). Of these on the average 25 % and 69 % of the total radiolarian flux is transported by Spumellaria and Nassellaria, respectively, while 5 % is carried by Phaeodaria. The measured SiO2 content of the skeletons averaged 91, 98 and 71 % of measured weight for Spumellaria, Nassellaria and Phaeodaria, respectively. The supply of radiolarian silica (mg SiO 2 /m 2/day) to each trap depth ranged from 2.5-4.0 (E), 0.9-3.2 (P ), and 5.7-10.4 (PB). The Radiolaria appear to be a significantly large portion of the SiO2 flux in >63 pm size fraction and thus play an important role in the silica cycle. When the radiolarian fluxes at the three Stations are compared with Holocene radiolarian accumulation rates in the same areas it became apparent that several percent or less of the fluxes are preserved in the sediments in all cases and the rest is dissolved on the sea-floor. Estimated excess Si which is derived from SiO2 dissolution on the sea-floor is fairly small relative to advective Si in the western North Atlantic and thus it appears to be insignificant to show any deviation in a simple mixing curve of deep water masses. Weight, length, width, projected area and volume of 58 radiolarian taxa were measured. The density contrast of radiolarians, relative to seawater, generally falls between 0.01 and 0.5 g/cm33. The sinking speed of 55 radiolarian taxa, measured in the laboratory at 3*C, ranged from 13 to 416 m/day. Despite the wide variety of morphology between the species, sinking speeds were best correlated with weight/shell among all the possible combinations of the examined variables. The estimated residence times of these taxa in the 5 km pelagic water column ranged from 2 weeks to 14 months. Large phaeodarians reached the water-sediment interface relatively quickly and ultimately dissolved on the sea floor. Small-sized taxa dissolved en route during sinking. The standing stock of 26 examined abundant taxa is on the order of 1 to 100 shells/m3 . Total radiolarian standing stock ranges from about 450 shells/m3 at Stations P1 and E to 1200 shells/m 3 at Station PB. The rate of production of total Radiolaria is calculated to be 77 to 225 shells/m 3 /day. The turnover time for these species ranges from several days to one month depending on the species and the assumption of the depth interval used for the estimation. / by Kozo Takahashi. / Ph.D.
140

A study of certain trace metals in sea water using anodic stripping voltammetry

Fitzgerald, William Francis, 1926- January 1970 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 1970. / "January 1970." / Includes bibliographical references (p. 173-177). / Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to follow theoretical behavior for thin film electrodes and the technique was found not to be adversely affected by dissolved organic material in sea water. Good precision (ca., 5%) was obtained in both coastal and open ocean waters at the in situ concentrations of Zn, Cu, Pb, and Cd. It was shown that this method is at present most suitable for measurements of Cu, Pb, and Cd in sea water. Evidence is given suggesting that Ni may interfere with the determination of Zn through formation of an intermetallic compound, and further studies are indicated to understand this phenomenon. The anodic stripping apparatus was adapted and used conveniently on shipboard. It was demonstrated that stripping analysis could be combined with a method for the destruction of dissolved organic matter- (photo-oxidation with ultra-violet radiation), and with an acidification procedure to obtain measurements of trace metal speciation in sea water. / (cont.) An argument for the existence of Cu-aspartic acid chelates in sea water has been described theoretically and demonstrated empirically; suggesting that a significant fraction of Cu and other trace metals may be expected to be organically sequestered in sea water. A study of coastal waters employing the total method (anodic stripping-photo-oxidation-acidification) indicated the presence of a significant group of organic ligands that complex Cu (ca., 60%). It was also shown that the waters subject to gross pollution contain about 30% of the total Cu in very stable organic complexes that release Cu only when the dissolved organic matter is destroyed, and not when the pH of this sea water is adjusted to 3. An open ocean trace metal study of a thermal-front zone in the western Sargasso Sea gave data for Cu, Zn, Pb, and Cd that compared favorably with other relevant investigations. Higher free metal concentrations were observed south of the front than to the north, providing further evidence that these fronts may mark a change between southern and northern conditions in the Sargasso Sea. Data obtained from shipboard analyses using the total analytical method indicates the presence of weak organic complexes with Cu and Pb in open ocean waters. / by William F. Fitzgerald. / Ph.D.

Page generated in 0.0882 seconds