Spelling suggestions: "subject:"point modeling"" "subject:"joint modeling""
11 |
JOINT MODELING OF MULTIVARIATE LONGITUDINAL DATA AND COMPETING RISKS DATARajeswaran, Jeevanantham 08 March 2013 (has links)
No description available.
|
12 |
Separate and Joint Analysis of Longitudinal and Survival DataRajeev, Deepthi 21 March 2007 (has links) (PDF)
Chemotherapy is a method used to treat cancer but it has a number of side-effects. Research conducted by the Department of Chemical Engineering at BYU involves a new method of administering chemotherapy using ultrasound waves and water-soluble capsules. The goal is to reduce the side-effects by localizing the delivery of the medication. As part of this research, a two-factor experiment was conducted on rats to test if the water-soluble capsules and ultrasound waves by themselves have an effect on tumor growth or patient survival. Our project emphasizes the usage of Bayesian Hierarchical Models and Win-BUGS to jointly model the survival data and the longitudinal data—mass. The results of the joint analysis indicate that the use of ultrasound and water-soluble microcapsules have no negative effect on survival. In fact, there appears to be a positive effect on the survival since the rats in the ultrasound-capsule group had higher survival rates than the rats in other treatment groups. From these results, it does appear that the new technology involving ultrasound waves and microcapsules is a promising way to reduce the side-effects of chemotherapy. It is strongly advocated that the formulation of a joint model for any longitudinal and survival data be performed. For future work for the ultrasound-microcapsule data it is recommended that joint modeling of the mass, tumor volume, and survival data be conducted to obtain additional information.
|
13 |
Joint Modeling the Relationship between Longitudinal and Survival Data Subject to Left Truncation with Applications to Cystic FibrosisVanderWyden Piccorelli, Annalisa January 2010 (has links)
No description available.
|
14 |
Bayesian predictive model averaging approach to joint longitudinal-survival modeling: Application to an immuno-oncology clinical trial / ベイズ予測モデル平均化法を用いた経時測定データと生存時間データの同時解析: 癌免疫臨床試験データへの適用Yao, Zixuan 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(医科学) / 甲第25204号 / 医科博第160号 / 新制||医科||10(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 佐藤 俊哉, 教授 古川 壽亮, 教授 武藤 学 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
15 |
Modélisation conjointe des thématiques et des opinions : application à l'analyse des données textuelles issues du Web / Joint topic-sentiment modeling : an application to Web data analysisDermouche, Mohamed 08 June 2015 (has links)
Cette thèse se situe à la confluence des domaines de "la modélisation de thématiques" (topic modeling) et l'"analyse d'opinions" (opinion mining). Le problème que nous traitons est la modélisation conjointe et dynamique des thématiques (sujets) et des opinions (prises de position) sur le Web et les médias sociaux. En effet, dans la littérature, ce problème est souvent décomposé en sous-tâches qui sont menées séparément. Ceci ne permet pas de prendre en compte les associations et les interactions entre les opinions et les thématiques sur lesquelles portent ces opinions (cibles). Dans cette thèse, nous nous intéressons à la modélisation conjointe et dynamique qui permet d'intégrer trois dimensions du texte (thématiques, opinions et temps). Afin d'y parvenir, nous adoptons une approche statistique, plus précisément, une approche basée sur les modèles de thématiques probabilistes (topic models). Nos principales contributions peuvent être résumées en deux points : 1. Le modèle TS (Topic-Sentiment model) : un nouveau modèle probabiliste qui permet une modélisation conjointe des thématiques et des opinions. Ce modèle permet de caractériser les distributions d'opinion relativement aux thématiques. L'objectif est d'estimer, à partir d'une collection de documents, dans quelles proportions d'opinion les thématiques sont traitées. 2. Le modèle TTS (Time-aware Topic-Sentiment model) : un nouveau modèle probabiliste pour caractériser l'évolution temporelle des thématiques et des opinions. En s'appuyant sur l'information temporelle (date de création de documents), le modèle TTS permet de caractériser l'évolution des thématiques et des opinions quantitativement, c'est-à-dire en terme de la variation du volume de données à travers le temps. Par ailleurs, nous apportons deux autres contributions : une nouvelle mesure pour évaluer et comparer les méthodes d'extraction de thématiques, ainsi qu'une nouvelle méthode hybride pour le classement d'opinions basée sur une combinaison de l'apprentissage automatique supervisé et la connaissance a priori. Toutes les méthodes proposées sont testées sur des données réelles en utilisant des évaluations adaptées. / This work is located at the junction of two domains : topic modeling and sentiment analysis. The problem that we propose to tackle is the joint and dynamic modeling of topics (subjects) and sentiments (opinions) on the Web. In the literature, the task is usually divided into sub-tasks that are treated separately. The models that operate this way fail to capture the topic-sentiment interaction and association. In this work, we propose a joint modeling of topics and sentiments, by taking into account associations between them. We are also interested in the dynamics of topic-sentiment associations. To this end, we adopt a statistical approach based on the probabilistic topic models. Our main contributions can be summarized in two points : 1. TS (Topic-Sentiment model) : a new probabilistic topic model for the joint extraction of topics and sentiments. This model allows to characterize the extracted topics with distributions over the sentiment polarities. The goal is to discover the sentiment proportions specfic to each of theextracted topics. 2. TTS (Time-aware Topic-Sentiment model) : a new probabilistic model to caracterize the topic-sentiment dynamics. Relying on the document's time information, TTS allows to characterize the quantitative evolutionfor each of the extracted topic-sentiment pairs. We also present two other contributions : a new evaluation framework for measuring the performance of topic-extraction methods, and a new hybrid method for sentiment detection and classification from text. This method is based on combining supervised machine learning and prior knowledge. All of the proposed methods are tested on real-world data based on adapted evaluation frameworks.
|
16 |
Using Latent Discourse Indicators to identify goodness in online conversationsAyush Jain (6012219) 16 January 2020 (has links)
In this work, we model latent discourse indicators to classify constructive and collaborative conversations online. Such conversations are considered good as they are rich in content and have a sense of direction to resolve an issue, solve a problem or gain new insights and knowledge. These unique discourse indicators are able to characterize flow of information, sentiment and community structure within discussions. We build a deep relational model that captures these complex discourse behaviors as latent variables and make a global prediction about overall conversation based on these higher level discourse behaviors. DRaiL, a Declarative Deep Relational Learning platform built on PyTorch, is used for our task in which relevant discourse behaviors are formulated as discrete latent variables and scored using a deep model. These variables capture the nuances involved in online conversations and provide the information needed for predicting the presence or absence of collaborative and constructive characterization in the entire conversational thread. We show that the joint modeling of such competing latent behaviors results in a performance improvement over the traditional direct classification methods in which all the raw features are just combined together to predict the final decision. The Yahoo News Annotated Comments Corpus is used as a dataset containing discussions on Yahoo news forums and final labels are annotated based on our precise and restricted definitions of positively labeled conversations. We formulated our annotation guidelines based on a sample set of conversations and resolved any conflict in specific annotation by revisiting those examples again.
|
17 |
Méthodes statistiques pour les essais de phase I/II de thérapies moléculaires ciblées en cancérologie / Statistical Methods for Phase I/II Trials of Molecularly Targeted Agents in OncologyAltzerinakou, Maria Athina 12 October 2018 (has links)
Les essais cliniques de phase I en cancérologie permettent d’identifier la dose optimale (DO), définie comme la dose maximale tolérée (DMT). Les approches conventionnelles de recherche de dose reposent uniquement sur les événements de toxicité observés au cours du premier cycle de traitement. Le développement des thérapies moléculaires ciblées (TMC), habituellement administrées sur de longues périodes, a remis en question cet objectif. Considérer uniquement le premier cycle de traitement n’est pas suffisant. De plus, comme l'activité n'augmente pas nécessairement de façon monotone avec la dose, la toxicité et l'activité doivent être prises en compte pour identifier la DO. Récemment, les biomarqueurs continus sont de plus en plus utilisés pour mesurer l'activité.L’objectif de cette thèse était de proposer et d'évaluer des designs adaptatifs pour identifier la DO. Nous avons développé deux designs de recherche de dose, basés sur une modélisation conjointe des mesures longitudinales de l'activité des biomarqueurs et de la première toxicité dose-limitante (DLT), avec un effet aléatoire partagé. En utilisant des propriétés de distribution normales asymétriques, l'estimation reposait sur la vraisemblance sans approximation ce qui est une propriété importante dans le cas de petits échantillons qui sont souvent disponibles dans ces essais. La DMT est associée à un certain risque cumulé de DLT sur un nombre prédéfini de cycles de traitement. La DO a été définie comme la dose la moins toxique parmi les doses actives, sous la contrainte de ne pas dépasser la DMT. Le second design étendait cette approche pour les cas d’une relation dose-activité qui pouvait atteindre un plateau. Un modèle à changement de pente a été implémenté. Nous avons évalué les performances des designs avec des études de simulations en étudiant plusieurs scénarios et divers degrés d'erreur de spécification des modèles.Finalement, nous avons effectué une analyse de 27 études des TMCs de phase I, en tant que monothérapie. Les études ont été réalisées par l'Institut National du Cancer. L'objectif principal était d'estimer le risque par cycle et l’incidence cumulative de la toxicité sévère, jusqu’à six cycles. Les analyses ont été effectuées séparément pour différents sous-groupes de doses, ainsi que pour les toxicités hématologiques et non-hématologiques. / Conventional dose-finding approaches in oncology of phase I clinical trials aim to identify the optimal dose (OD) defined as the maximum tolerated dose (MTD), based on the toxicity events observed during the first treatment cycle. The constant development of molecularly targeted agents (MTAs), usually administered in chronic schedules, has challenged this objective. Not only, the outcomes after the first cycle are of importance, but also activity does not necessarily increase monotonically with dose. Therefore, both toxicity and activity should be considered for the identification of the OD. Lately, continuous biomarkers are used more and more to monitor activity. The aim of this thesis was to propose and evaluate adaptive designs for the identification of the OD. We developed two dose-finding designs, based on a joint modeling of longitudinal continuous biomarker activity measurements and time to first dose limiting toxicity (DLT), with a shared random effect, using skewed normal distribution properties. Estimation relied on likelihood that did not require approximation, an important property in the context of small sample sizes, typical of phase I/II trials. We addressed the important case of missing at random data that stem from unacceptable toxicity, lack of activity and rapid deterioration of phase I patients. The MTD was associated to some cumulative risk of DLT over a predefined number of treatment cycles. The OD was defined as the lowest dose within a range of active doses, under the constraint of not exceeding the MTD. The second design extended this approach for cases of a dose-activity relationship that could reach a plateau. A change point model was implemented. The performance of the approaches was evaluated through simulation studies, investigating a wide range of scenarios and various degrees of data misspecification. As a last part, we performed an analysis of 27 phase I studies of MTAs, as monotherapy, conducted by the National Cancer Institut. The primary focus was to estimate the per-cycle risk and the cumulative incidence function of severe toxicity, over up to six cycles. Analyses were performed separately for different dose subgroups, as well as for hematologic and non-hematologic toxicities.
|
18 |
Apport des méthodes de survie nette dans le pronostic des lymphomes malins non hodgkiniens en population générale / Contribution of net survival methods to the prognosis of Non-Hodgkin lymphoma in population studiesMounier, Morgane 17 September 2015 (has links)
L'étude de la survie nette des patients atteints de cancer en population générale permet d'apprécier l'efficience globale du système de soin d'un pays. La survie nette se définit comme la survie qui serait observée si la seule cause de décès possible était le cancer. Ce concept est fondamental dans les comparaisons entre zones géographiques et/ou périodes de diagnostic dont l'intérêt est d'estimer les variations spécifiques de la mortalité due au cancer. Le concept de survie nette permet de prendre en compte les éventuelles différences de mortalité naturelle entre les groupes comparés. Actuellement, seuls deux outils estiment la survie nette sans biais : l'estimateur non paramétrique de Pohar-Perme et la modélisation paramétrique ajustée sur certaines covariables (essentiellement l'âge). Par ailleurs, les outils paramétriques s'étant perfectionnés, de nouveaux modèles flexibles permettent de modéliser les effets complexes des variables sur la mortalité. Ce travail repose sur la modélisation du taux de mortalité en excès à la suite d'un lymphome malin non hodgkinien, en se basant sur le modèle proposé par Remontet et al. et sur la nécessité de modéliser conjointement les effets complexes des covariables (telles que le temps de suivi, l'année de diagnostic et l'âge) sur la mortalité à l'aide d'une stratégie de modélisation adaptée. L'effet des variables est restitué sur la survie nette mais aussi sur le taux de mortalité en excès ce qui représente un élément nouveau dans les études de survie. Deux applications ont été menées sur des bases de données collaboratives de population : d'une part sur les données françaises du réseau FRANCIM à la suite d'un diagnostic de lymphome folliculaire entre 1995 et 2010 et, d'autre part, sur les données européennes d'EUROCARE-5 après un lymphome folliculaire ou un lymphome B diffus à grandes cellules diagnostiqué entre 1996 et 2004. Les résultats montrent que la dynamique du taux de mortalité en excès au cours du temps de suivi varie en fonction du sous-type de lymphome, de l'âge et de la zone géographique. Les tendances de cette dynamique en fonction de l'année de diagnostic sont également différentes / The net survival of cancer patients in population studies is the most relevant indicator to assess the overall efficiency of the healthcare system of a country. Net survival is defined as the survival that would be observed if the sole cause of death were cancer. This concept is crucial in comparative studies (between geographical areas and/or periods of diagnosis) that estimate specific variations of cancer-related deaths. Net survival takes into account potential differences in mortality patterns between groups. Currently, two methods provide unbiased estimations of net survival: the non-parametric estimator of Pohar-Perme and the parametric model adjusted on specific covariates (mainly, the age at diagnosis). Moreover, new improved parametric tools, such as flexible models, can model the complex covariate effects on mortality. In this work, we modeled the excess mortality rate after a non Hodgkin lymphoma diagnosis, with a model developed by Remontet et al. In addition, we used an appropriate model-building-strategy to model jointly the complex effects of some covariates (such as the time elapsed since diagnosis, the year of diagnosis, and age) on the excess mortality. Finally, this approach allowed for the covariate effects on the net survival and on the excess mortality rate. We applied this method to two different collaborative databases: first on the French database FRANCIM (1995 to 2010) to study the excess mortality after diagnosis of follicular lymphoma, then on the European data of EUROCARE-5 (1996 to 2004) to study the excess mortality after diagnosis of follicular lymphoma and diffuse large B-cell lymphoma. According to the results, the dynamics of the excess mortality rate varies over the time elapsed since diagnosis according to the lymphoma subtype, the age, and the geographical area. The trends of these dynamics over the years of diagnosis are different too
|
19 |
Statistical analysis of clinical trial data using Monte Carlo methodsHan, Baoguang 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In medical research, data analysis often requires complex statistical methods where no closed-form solutions are available. Under such circumstances, Monte Carlo (MC) methods have found many applications. In this dissertation, we proposed several novel statistical models where MC methods are utilized. For the first part, we focused on semicompeting risks data in which a non-terminal event was subject to dependent censoring by a terminal event. Based on an illness-death multistate survival model, we proposed flexible random effects models. Further, we extended our model to the setting of joint modeling where both semicompeting risks data and repeated marker data are simultaneously analyzed. Since the proposed methods involve high-dimensional integrations, Bayesian Monte Carlo Markov Chain (MCMC) methods were utilized for estimation. The use of Bayesian methods also facilitates the prediction of individual patient outcomes. The proposed methods were demonstrated in both simulation and case studies.
For the second part, we focused on re-randomization test, which is a nonparametric method that makes inferences solely based on the randomization procedure used in clinical trials. With this type of inference, Monte Carlo method is often used for generating null distributions on the treatment difference. However, an issue was recently discovered when subjects in a clinical trial were randomized with unbalanced treatment allocation to two treatments according to the minimization algorithm, a randomization procedure frequently used in practice. The null distribution of the re-randomization test statistics was found not to be centered at zero, which comprised power of the test. In this dissertation, we investigated the property of the re-randomization test and proposed a weighted re-randomization method to overcome this issue. The proposed method was demonstrated through extensive simulation studies.
|
Page generated in 0.0592 seconds