• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • Tagged with
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 35
  • 19
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Circulation and convection in the Irminger Sea

Våge, Kjetil January 2010 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 131-149). / Aspects of the circulation and convection in the Irminger Sea are investigated using a variety of in-situ, satellite, and atmospheric reanalysis products. Westerly Greenland tip jet events are intense, small-scale wind phenomena located east of Cape Farewell, and are important to circulation and convection in the Irminger Sea. A climatology of such events was used to investigate their evolution and mechanism of generation. The air parcels constituting the tip jet are shown to have a continental origin, and to exhibit a characteristic deflection and acceleration around southern Greenland. The events are almost invariably accompanied both by a notable coherence of the lower-level tip jet with an overlying upper-level jet stream, and by a surface cyclone located in the lee (east) of Greenland. It is argued that the tip jet arises from the interplay of the synopticscale flow evolution and the perturbing effects of Greenland's topography upon the flow. The Irminger Gyre is a narrow, cyclonic recirculation confined to the southwest Irminger Sea. While the gyre's existence has been previously documented, relatively little is known about its specific features or variability. The mean strength of the gyre's circulation between 1991 and 2007 was 6.8 ± 1.8 Sv. It intensified at a rate of 4.3 Sv per decade over the observed period despite declining atmospheric forcing. Examination of the temporal evolution of the LSW layer thickness across the Irminger Basin suggests that local convection formed LSW during the early 1990s within the Irminger Gyre. In contrast, LSW appeared outside of the gyre in the eastern part of the Irminger Sea with a time lag of 2-3 years, consistent with transit from a remote source in the Labrador Sea. In the winter of 2007-08 deep convection returned to both the Labrador and Irminger seas following years of shallow overturning. The transition to a convective state took place abruptly, without going through a preconditioning phase, which is contrary to general expectations. Changes in the hemispheric air temperature, tracks of storms, flux of freshwater to the Labrador Sea, and distribution of pack ice all conspired to enhance the air-sea heat flux, resulting in the deep overturning. / Kjetil Våge. / Ph.D.
72

Submesoscale coherent vortices in the deep Brazil Basin

Kassis, Patricia January 2000 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000. / Includes bibliographical references (p. 65-67). / With Lagrangian and hydrographic data taken in the deep Brazil Basin, we identify several submesoscale coherent vortices (SCVs). These features contrast with SCV paradigms in that float data indicate approximately equal populations of cyclonic and anticyclonic vortices, and hydrographic data suggest that roughly half exhibit the convex lens shape generally associated with SCVs, while half are instead shaped like a concave lens, with isopycnal surfaces pinched together. There is some evidence that the vortex cores may be enriched in warm, salty North Atlantic Deep Water, suggesting formation in the north or northwest regions of the basin. Data is available from 153 floats which were ballasted for 2500 and 4000 db pressures. They tracked 34 eddies, which are believed to be roughly 30 km in diameter, and rotate with apparent periods of about 30 days. Many floats experienced formation or entrainment events, and destruction or detrainment events, near seamounts. / by Patricia Kassis. / S.M.
73

A multi-dimensional spectral description of ocean variability with applications

Wortham, Cimarron James Lemuel, IV January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2013. / "February 2013." Cataloged from PDF version of thesis. / Includes bibliographical references (p. 175-184). / Efforts to monitor the ocean for signs of climate change are hampered by ever-present noise, in the form of stochastic ocean variability, and detailed knowledge of the character of this noise is necessary for estimating the significance of apparent trends. Typically, uncertainty estimates are made by a variety of ad hoc methods, often based on numerical model results or the variability of the data set being analyzed. We provide a systematic approach based on the four-dimensional frequency-wavenumber spectrum of low-frequency ocean variability. This thesis presents an empirical model of the spectrum of ocean variability for periods between about 20 days and 15 years and wavelengths of about 200-10,000 km, and describes applications to ocean circulation trend detection, observing system design, and satellite data processing. The horizontal wavenumber-frequency part of the model spectrum is based on satellite altimetry, current meter data, moored temperature records, and shipboard ADCP data. The spectrum is dominated by motions along a "nondispersive line". The observations considered are consistent with a universal [omega] -² power law at the high end of the frequency range, but inconsistent with a universal wavenumber power law. The model spectrum is globally varying and accounts for changes in dominant phase speed, period, and wavelength with location. The vertical structure of the model spectrum is based on numerical model results, current meter data, and theoretical considerations. We find that the vertical structure of kinetic energy is surface intensified relative to the simplest theoretical predictions. We present a theory for the interaction of linear Rossby waves with rough topography; rough topography can explain both the observed phase speeds and vertical structure of variability. The improved description of low-frequency ocean variability presented here will serve as a useful tool for future oceanographic studies. / by Cimarron James Lemuel Wortham, IV. / Ph.D.
74

Surface and bottom boundary layer dynamics on a shallow submarine bank : southern flank of Georges Bank

Werner, Sandra R. (Sandra Regina) January 1999 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references. / The thesis investigates the circulation at a 76-m deep study site on the southern flank of Georges Bank, a shallow submarine bank located between the deeper Gulf of Maine and the continental slope. Emphasis is placed on the vertical structure of the bottom boundary layer driven by the semidiurnal tides and the flow field's response to wind forcing. The observational analysis presented here is based on a combination of moored array and bottom tripod-mounted current, temperature, conductivity, and meteorological data taken between February and August 1995. Results from the bottom boundary layer analysis are compared to numerical model predictions for tidal flow over rough bottom topography. The flow response to wind forcing is examined and brought into context with the existing understanding of the wind-induced circulation in the Georges Bank region. Particular attention is given to the vertical distribution of the wind-driven currents, whose variation with background stratification is discussed and compared to observations from open ocean studies. / by Sandra Regina Warner. / Ph.D.
75

The production of temperature and salinity variance and covariance : implications for mixing

Schanze, Julian J. (Julian Johannes) January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 187-195). / Large-scale thermal forcing and freshwater fluxes play an essential role in setting temperature and salinity in the ocean. A number of recent estimates of the global oceanic freshwater balance as well as the global oceanic surface net heat flux are used to investigate the effects of heat- and freshwater forcing at the ocean surface. Such forcing induces changes in both density and density-compensated temperature and salinity changes ('spice'). The ratio of the relative contributions of haline and thermal forcing in the mixed layer is maintained by large-scale surface fluxes, leading to important consequences for mixing in the ocean interior. In a stratified ocean, mixing processes can be either along lines of constant density (isopycnal) or across those lines (diapycnal). The contribution of these processes to the total mixing rate in the ocean can be estimated from the large-scale forcing by evaluating the production of thermal variance, salinity variance and temperature-salinity covariance. Here, I use new estimates of surface fluxes to evaluate these terms and combine them to generate estimates of the production of density and spice variance under the assumption of a linear equation of state. As a consequence, it is possible to estimate the relative importance of isopycnal and diapycnal mixing in the ocean. While isopycnal and diapycnal processes occur on very different length scales, I find that the surface-driven production of density and spice variance requires an approximate equipartition between isopycnal and diapycnal mixing in the ocean interior. In addition, consideration of the full nonlinear equation of state reveals that surface fluxes require an apparent buoyancy gain (expansion) of the ocean, which allows an estimate of the amount of contraction on mixing due to cabbeling in the ocean interior. / by Julian J. Schanze. / Ph.D.
76

Spectral description of low frequency oceanic variability

Zang, Xiaoyun, 1971- January 2000 (has links)
Thesis (Ph.D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000. / Includes bibliographical references (p. 179-187). / A simple dynamic model is used with various observations to provide an approximate spectral description of low frequency oceanic variability. Such a spectrum has wide application in oceanography, including the optimal design of observational strategy for the deployment of floats, the study of Lagrangian statistics and the estimate of uncertainty for heat content and mass flux. Analytic formulas for the frequency and wavenumber spectra of any physical variable, and for the cross spectra between any two different variables for each vertical mode of the simple dynamic model are derived. No heat transport exists in the model. No momentum flux exists either if the energy distribution is isotropic. It is found that all model spectra are related to each other through the frequency and wavenumber spectrum of the stream-function for each mode, ... , where ... represent horizontal wavenumbers, w stands for frequency, n is vertical mode number, and ... are latitude and longitude, respectively. Given ... , any model spectrum can be estimated. In this study, an inverse problem is faced: ... is unknown; however, some observational spectra are available. I want to estimate ... if it exists. Estimated spectra of the low frequency variability are derived from various measurements: (i) The vertical structure of and kinetic energy and potential energy is inferred from current meter and temperature mooring measurements, respectively. (ii) Satellite altimetry measurements produce the geographic distributions of surface kinetic energy magnitude and the frequency and wavenumber spectra of sea surface height. (iii) XBT measurements yield the temperature wavenumber spectra and their depth dependence. (v) Current meter and temperature mooring measurements provide the frequency spectra of horizontal velocities and temperature. It is found that a simple form for ... does exist and an analytical formula for a geographically varying ... is constructed. Only the energy magnitude depends on location. The wavenumber spectral shape, frequency spectral shape and vertical mode structure are universal. This study shows that motion within the large-scale low-frequency spectral band is primarily governed by quasigeostrophic dynamics and all observations can be simplified as a certain function of ... The low frequency variability is a broad-band process and Rossby waves are particular parts of it. Although they are an incomplete description of oceanic variability in the North Pacific, real oceanic motions with energy levels varying from about 10-40% of the total in each frequency band are indistinguishable from the simplest theoretical Rossby wave description. At higher latitudes, as the linear waves slow, they disappear altogether. Non-equatorial latitudes display some energy with frequencies too high for consistency with linear theory; this energy produces a positive bias if a lumped average westward phase speed is computed for all the motions present. / by Xiaoyun Zang. / Ph.D.
77

Variability in the North Atlantic Deep Western Boundary Current : upstream causes and downstream effects as observed at Line W / Variability in the NA DWBC : upstream causes and downstream effects as observed at Line W

Peña-Molino, Beatriz January 2010 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 165-174). / The variability in the DWBC, its connection to the forcing in the northern North Atlantic and interaction with the Gulf Stream were explored from a combination of remote sensing and in-situ measurements in the western North Atlantic. Using satellite altimetry and Sea Surface Temperature (SST) we found evidence of the relation between changes in the Gulf Stream path and the variability in the temperature and velocity fields in the Slope Water. This relation was such that southward shifts of the main axis of the Gulf Stream were preceded by cold temperature anomalies and intensification of the southwestward flow. The analysis of 5.5 years of moored CTD and horizontal velocity data in the DWBC at 69 0W recorded during the period 2002-2008, showed that the variability along the DWBC is linked to changes in the dense water formation regions. The evolution of potential vorticity (PV) at the mooring site, characterized by a transition from deep to upper Labrador Sea Water (LSW), was similar to that observed in the Labrador Sea 6 to 9 years earlier, and imply spreading rates for the LSW that varied over time from 1.5 to 2.5cm/s. The time dependence of the spreading rates was in good agreement with changes in the strength of the DWBC at the mooring site. The evolution of the DWBC transport was explored in more detail from a 5- element moored array, also at 69'W. The results, for the period of 2004-2008, were consistent with the single mooring analysis. The variability measured from the array showed that upper, intermediate and deep water mass layers expand and contract at each other's expense, leading to alternating positive and negative PV anomalies at the upper-LSW, deep-LSW and Overflow Water (OW). Larger DWBC transports were associated with enhanced presence of recently ventilated upper-LSW and OW, rather than deep-LSW. The relative contribution of the different water masses to the observed circulation was investigated by inverting individual PV anomalies isolated from the observations. We found that changes in the depth-integrated circulation were mostly driven by changes in the OW. / by Beatriz Peña-Molino. / Ph.D.
78

A laboratory study of localized boundary mixing in a rotating stratified fluid / Localized boundary mixing in a rotating stratified fluid

Wells, Judith R. (Judith Roberta) January 2003 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003. / Includes bibliographical references (p. 145-148). / Oceanic observations indicate that abyssal mixing is localized in regions of rough topography. How locally mixed fluid interacts with the ambient fluid is an open question. Laboratory experiments explore the interaction of mechanically induced boundary mixing and an interior body of linearly stratified rotating fluid. Turbulence is generated by a vertically oscillating horizontal bar, located at middepth along the tank wall. The turbulence forms a region of mixed fluid which quickly reaches a steady state height and collapses into the interior. The mixed layer thickness ... is independent of the Coriolis frequency f. N is the buoyancy frequency, co is the bar frequency, and the constant, Y=1 cm, is empirically determined by bar mechanics. In initial experiments, the bar is exposed on three sides. Mixed fluid intrudes directly into the interior as a radial front of uniform height, rather than as a boundary current. Mixed fluid volume grows linearly with time ... The circulation patterns suggest a model of unmixed fluid being laterally entrained with velocity, e Nhm, into the sides of a turbulent zone with height hm and width Lf ... where Lf is an equilibrium scale associated with rotational control of bar-generated turbulence. In accord with the model, outflux is constant, independent of stratification and restricted by rotation ... Later experiments investigate the role of lateral entrainment by confining the sides of the mixing bar between two walls, forming a channel open to the basin at one end. A small percentage of exported fluid enters a boundary current, but the bulk forms a cyclonic circulation in front of the bar. As the recirculation region expands to fill the channel, it restricts horizontal entrainment into the turbulent zone. The flux of mixed fluid decays with time. / (cont.) ... The production of mixed fluid depends on the size of the mixing zone as well as on the balance between turbulence, rotation and stratification. As horizontal entrainment is shut down, longterm production of mixed fluid may be determined through much weaker vertical entrainment. Ultimately, the export of mixed fluid from the channel is restricted to the weak boundary current. / by Judith R. Wells. / Ph.D.
79

Generation of mid-ocean eddies : the local baroclinic instability hypothesis

Arbic, Brian K January 2000 (has links)
Thesis (Ph.D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000. / Includes bibliographical references (p. 284-290). / by Brian Kenneth Arbic. / Ph.D.
80

The upper ocean response to the monsoon in the Arabian Sea

Fischer, Albert S. (Albert Sok) January 2000 (has links)
Thesis (Ph.D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000. / Includes bibliographical references (p. 217-222). / Estimation of the upper ocean heat budget from one year of observations at a moored array in the north central Arabian Sea shows a rough balance between the horizontal advection and time change in heat when the one-dimensional balance between the surface heat flux and oceanic heat content breaks down. The two major episodes of horizontal advection, during the early northeast (NE) and late southwest (SW) monsoon seasons, are both associated with the propagation of mesoscale eddies. During the NE monsoon, the heat fluxes within the mixed layer are not significantly different from zero, and the large heat flux comes from advected changes in the thermocline depth. During the SW monsoon a coastal filament exports recently upwelled water from the Omani coast to the site of the array, 600 km offshore. Altimetry shows mildly elevated levels of surface eddy kinetic energy along the Arabian coast during the SW monsoon, suggesting that such offshore transport may be an important component of the Arabian Sea heat budget. The sea surface temperature (SST) and mixed layer depth are observed to respond to high frequency (HF, diurnal to atmospheric synoptic time scales) variability in the surface heat flux and wind stress. The rectified effect of this HF forcing is investigated in a three-dimensional reduced gravity thermodynamic model of the Arabian Sea and Indian Ocean. Both the HF heat and wind forcing act locally to increase vertical mixing in the model, reducing the SST. Interactions between the local response to the surface forcing, Ekman divergences, and remotely propagated signals in the model can reverse this, generating greater SSTs under HF forcing, particularly at low latitudes. The annual mean SST, however, is lowered under HF forcing, changing the balance between the net surface heat flux (which is dependent on the SST) and the meridional heat flux in the model. A suite of experiments with one-dimensional upper ocean models with different representations of vertical mixing processes suggests that the rectified effect of the diurnal heating cycle is dependent on the model, and overstated in the formulation used in the three-dimensional model. / by Albert Sok Fischer. / Ph.D.

Page generated in 0.0817 seconds