• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graphene-based Josephson junctions: phase diffusion, effects of magnetic field, and mesoscopic properties.

Borzenets, Ivan Valerievich January 2012 (has links)
<p>We report on graphene-based Superconductor-Normal metal-Superconductor Joseph- son junctions with contacts made from lead. The high transition temperature of this superconductor allows us to observe the supercurrent branch at temperatures up to &#1113094; 2 K. We are able to detect a small, but non-zero, resistance despite the Josephson junctions being in the superconducting state. We attribute this resistance to the phase diffusion regime, which has not been yet identified in graphene. By measuring the resistance as a function of temperature and gate voltage, we can further charac- terize the nature of electromagnetic environment and dissipation in our samples. In addition we modulate the critical current through grapehene by an external magnetic field; the resulting Fraunhofer interference pattern shows several periods of oscilla- tions. However, deviations from the perfect Fraunhofer pattern are observed, and their cause is explained by a simulation that takes into account the sample design.</p> / Dissertation
2

Nonlinear dynamics of Josephson Junction Chains and Superconducting Resonators

Ergül, Adem January 2013 (has links)
This thesis presents the results of the experimental studies on two kindof Superconducting circuits: one-dimensional Josephson junction chains andsuperconducting coplanar waveguide (CPW) resonators. One-dimensionalJosephson junction chains are constructed by connecting many Superconducting quantum interference devices (SQUIDs) in series. We have studied DC transport properties of the SQUID chains and model their nonlineardynamics with Thermally Activated Phase-Slips (TAPS). Experimental andsimulated results showed qualitative agreement revealing the existence of auniform phase-slipping and phase-sticking process which results in a voltage-independent current on the dissipative branch of the current-voltage char-acteristics (IVC). By modulating the effective Josephson coupling energy ofthe SQUIDs (EJ ) with an external magnetic field, we found that the ratio EJ /EC is a decisive factor in determining the qualitative shape of theIVC. A quantum phase transition between incoherent Quantum Phase Slip, QPS (supercurrent branch with a finite slope) to coherent QPS (IVC withwell-developed Coulomb blockade) via an intermediate state (supercurrentbranch with a remnant of Coulomb blockade) is observed as the EJ /EC ratio is tuned. This transition from incoherent QPS to the intermediate-statehappens around R0 ∼ RQ (RQ = h/4e^2 = 6.45kΩ). We also fabricated structured chains where a SQUID at the middle of the chain (central SQUID) has different junction size and loop area compared to other SQUIDs in the chain. Results showed that with these structured chains it is possible to localize andtune the amplitude of both TAPS and QPS at the central SQUID. The second part of the thesis describes the fabrication process and themeasurement results of superconducting CPW resonators. Resonators withdifferent design parameters were fabricated and measured. The transmissionspectra showed quality factors up to, Q ∼ 5 × 10^5 . We have observed bendingof the resonance curves to the lower frequencies due to existence of a nonlinear kinetic inductance. The origin of the nonlinear kinetic inductance isthe nonlinear relation between supercurrent density, Js, and superfluid veloc-ity, vs , of the charge carriers on the center line of the resonators. A simplemodel based on the Ginzburg-Landau theory is used in order to explain ob-served nonlinear kinetic inductance and estimates using this model showedgood agreement with the experimental results. / <p>QC 20131030</p> / SCOPE
3

Effect of Dissipation on the Dynamics of Superconducting Single Electron Transistors

Meng, Shuchao January 2012 (has links)
In this thesis, I will present the experimental results of the dynamics of superconducting single electron transistors (sSETs), under the influence of tunable dissipation. The sSET, consisting of two dc SQUIDs in series and the third gate electrode, is deposited onto a GaAs/AlGaAs heterostructure which contains a two dimensional electron gas plane 100nm beneath the substrate surface. The Josephson coupling energy, charging energy and dissipation related Hamiltonian can all be tuned in situ, while keeping others unchanged. We measured the switching current statistics and the transport properties, as a function of the dissipation and gate charge at different temperatures. If the sSET is in the classical regime where phase is a good quantum variable, we found that the switching current and corresponding Josephson energy decrease as dissipation increases. Our observation agrees qualitatively with the theoretical calculation of a single Josephson junction with dominant Josephson energy, in a frequency dependent dissipative environment where energy barrier decreases as dissipation increases in thermally activated escape regime. This dissipation dependence result can be understood as the consequence of a reduced quantum fluctuations in the charge numbers. Whereas in the charging regime, the switching current shows a 1e periodicity with respect to gate charge, indicating a pronounced charging effect. At a specific gate charge number, quantum fluctuations of the phase variable are compressed as dissipation increases, resulting in an enhanced switching current and Josephson energy. This result matches the theory of a sSET capacitively coupled to a dissipative environment qualitatively. The temperature dependence of the switching current histogram indicates the existence of both quantum and classical thermal phase diffusion. Moreover, quantum charge fluctuations are minimized at the degeneracy point, causing a sharp dip on the width of the switching current histogram. For a sSET with comparable Josephson energy and charging energy, quantum fluctuations of both phase and charge variables are significant. The influence of dissipation on the dynamics of the device is distinct in the classical and charging regimes. Dissipation compresses quantum phase fluctuations in the charging regime, whereas reduces the quantum charge fluctuations in the classical regime. The transition between these two regimes is found to be determined by the tunnel resistance of the SQUID. The competition between Josephson and charging energies, however, is not the intrinsic parameter of this transition. Our results imply that a detailed theoretical calculation of a sSET with comparable Josephson coupling energy and charging energy under the influence of dissipation is needed.
4

Effect of Dissipation on the Dynamics of Superconducting Single Electron Transistors

Meng, Shuchao January 2012 (has links)
In this thesis, I will present the experimental results of the dynamics of superconducting single electron transistors (sSETs), under the influence of tunable dissipation. The sSET, consisting of two dc SQUIDs in series and the third gate electrode, is deposited onto a GaAs/AlGaAs heterostructure which contains a two dimensional electron gas plane 100nm beneath the substrate surface. The Josephson coupling energy, charging energy and dissipation related Hamiltonian can all be tuned in situ, while keeping others unchanged. We measured the switching current statistics and the transport properties, as a function of the dissipation and gate charge at different temperatures. If the sSET is in the classical regime where phase is a good quantum variable, we found that the switching current and corresponding Josephson energy decrease as dissipation increases. Our observation agrees qualitatively with the theoretical calculation of a single Josephson junction with dominant Josephson energy, in a frequency dependent dissipative environment where energy barrier decreases as dissipation increases in thermally activated escape regime. This dissipation dependence result can be understood as the consequence of a reduced quantum fluctuations in the charge numbers. Whereas in the charging regime, the switching current shows a 1e periodicity with respect to gate charge, indicating a pronounced charging effect. At a specific gate charge number, quantum fluctuations of the phase variable are compressed as dissipation increases, resulting in an enhanced switching current and Josephson energy. This result matches the theory of a sSET capacitively coupled to a dissipative environment qualitatively. The temperature dependence of the switching current histogram indicates the existence of both quantum and classical thermal phase diffusion. Moreover, quantum charge fluctuations are minimized at the degeneracy point, causing a sharp dip on the width of the switching current histogram. For a sSET with comparable Josephson energy and charging energy, quantum fluctuations of both phase and charge variables are significant. The influence of dissipation on the dynamics of the device is distinct in the classical and charging regimes. Dissipation compresses quantum phase fluctuations in the charging regime, whereas reduces the quantum charge fluctuations in the classical regime. The transition between these two regimes is found to be determined by the tunnel resistance of the SQUID. The competition between Josephson and charging energies, however, is not the intrinsic parameter of this transition. Our results imply that a detailed theoretical calculation of a sSET with comparable Josephson coupling energy and charging energy under the influence of dissipation is needed.
5

Josephson transistors interacting with dissipative environment

Leppäkangas, J. (Juha) 14 April 2009 (has links)
Abstract The quantum-mechanical effects typical for single atoms or molecules can be reproduced in micrometer-scale electric devices. In these systems the essential component is a small Josephson junction (JJ) consisting of two superconductors separated by a thin insulator. The quantum phenomena can be controlled in real time by external signals and have a great potential for novel applications. However, their fragility on uncontrolled disturbance caused by typical nearby environments is a drawback for quantum information science, but a virtue for detector technology. Motivated by this we have theoretically studied transistor kind of devices based on single-charge tunneling through small JJs. A common factor of the research is the analysis of the interplay between the coherent Cooper-pair (charge carriers in the superconducting state) tunneling and incoherent environmental processes. In the first work we calculate the current due to incoherent Cooper-pair tunneling through a voltage-biased small JJ in series with large JJs and compare the results with recent experiments. We are able to reproduce the main experimental features and interpret these as traces of energy levels and energy bands of the mesoscopic device. In the second work we analyze a similar circuit (asymmetric single-Cooper-pair transistor) but under the assumption that the Cooper-pair tunneling is mainly coherent. This predicts new resonant transport voltages in the circuit due to higher-order processes. However, no clear traces of most of them are seen in the experiments, and similar discrepancy is present also in the case of the symmetric circuit. We continue to study this problem by modeling the interplay between the coherent and incoherent processes more accurately using a density-matrix approach. By this we are able to demonstrate that in typical conditions most of these resonances are indeed washed out by strong decoherence caused by the environment. We also analyze the contribution of three typical weakly interacting dissipative environments: electromagnetic environment, spurious charge fluctuators in the nearby insulating materials, and quasiparticles. In the last work we model the dynamics of a current-biased JJ perturbed by a smaller JJ using a similar density-matrix approach. We demonstrate that the small JJ can be used also as a detector of the energy-band dynamics in a current biased JJ. The method is also used for modeling the charge transport in the Bloch-oscillating transistor.
6

Limite d'Anderson et états de bords topologiques / Anderson limit and topological edge states

Zhang, Tianzhen 13 September 2018 (has links)
Cette thèse décrit la fabrication de systèmes hybrides basés sur le semi-conducteur InAs et leur étude par spectroscopie STM et la mesure de jonctions Josephson. Dans une première expérience, je montre que des nanocristaux (NC) de plomb (Pb) supraconducteurs de haute qualité peuvent être réalisés sur la surface (110) d'InAs. Lorsque la taille latérale des NC est inférieure à la longueur d'onde de Fermi du gaz d'électrons bidimensionnel accumulé à la surface de InAs, les NC ne sont que faiblement couplés à ce gaz électronique et se retrouvent donc dans le régime de blocage de Coulomb. Ce phénomène a permis la première étude de l'effet de parité supraconducteur par spectroscopie STM, que nous avons utilisée pour vérifier la validité de la limite d'Anderson. Dans une seconde expérience, je montre que des NC de Bismuth (Bi) de haute qualité peuvent également être réalisés sur la surface (110) d'InAs. Contrairement aux NC de Pb, une couche de mouillage de Bi sépare les NC de la surface InAs, conduisant à un fort couplage entre les NC de Bi et le substrat. A partir de la spectroscopie STM, nous avons identifié des états de bord sur le plan (111) des NC avec une symétrie C3. En supposant que le bismuth est un isolant topologique de second ordre comme suggéré théoriquement, les états de bords observés peuvent être interprétés naturellement comme les états de charnière prédits dans cette dernière théorie de bande topologique. / This thesis describes the fabrication of hybrid systems based on the narrow-gap semiconductor InAs and their study through STM spectroscopy and measure of the Josephson characteristics. In the first experiment, I show that high quality superconducting Lead (Pb) nanocrystals can be grown on the (110) surface of InAs. When the lateral size of the Pb nanocrystals is smaller than the Fermi wavelength of the two-dimensional electron gas accumulated at the surface of InAs, the nanocrystals are only weakly coupled to this electron gas and, consequently, are found in the regime of Coulomb blockade. This phenomenon enabled the first study of the superconducting parity effect through STM spectroscopy, which we employed to check the validity of the Anderson limit. In the second experiment, I show that high quality Bismuth (Bi) nanocrystals can also be grown on the (110) surface of InAs. In contrast to Pb nanocrystals, a wetting layer of Bi separates the nanocrystals from the InAs surface, leading to a strong coupling between the Bi nanocrystals and the substrate. From STM spectroscopy, we have identified edge-states on the (111) plane of the nanocrystals with C3 symmetry. Assuming that Bismuth is a 2nd order topological insulator as suggested theoretically, the observed edge-states can be interpreted naturally as the hinge-states predicted in this last topological band-theory. Finally, I will present the methods that I developed for the fabrication of hybrid Josephson junctions on bulk InAs and InAs/GaSb heterostructures, together with preliminary measurements of Josephson characteristics.
7

A Process for Hybrid Superconducting and Graphene Devices

Cochran, Zachary 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / As the search for ever-higher-speed, greater-density, and lower-power technologies accelerates, so does the quest for devices and methodologies to fulfill the increasingly-difficult requirements for these technologies. A possible means by which this may be accomplished is to utilize superconducting devices and graphene nanoribbon nanotechnologies. This is because superconductors are ultra-low-power devices capable of generating extremely high frequency (EHF) signals, and graphene nanoribbons are nanoscale devices capable of extremely high-speed and low-power signal amplification due to their high-mobility/low-resistance channels and geometry-dependent bandgap structure. While such a hybrid co-integrated system seems possible, no process by which this may be accomplished has yet been proposed. In this thesis, the system limitations are explored in-depth, and several possible means by which superconducting and graphene nanotechnological systems may be united are proposed, with the focus being placed on the simplest method by which the technologies may be hybridized and integrated together, while maintaining control over the intended system behavior. This is accomplished in three parts. First, via circuit-level simulation, a semi-optimized, low-power (~0.21 mW/stage) graphene-based amplifier is developed using ideal and simplified transmission line properties. This system is theoretically capable of 159-269 GHz bandwidth with a Stern stability K >> 1 and low noise figure 2.97 <= F <= 4.33 dB for all appropriate frequencies at temperatures between 77 and 90 K. Second, an investigation of the behavior of several types of possible interconnect methodologies is performed, utilizing hybrid substrates and material interfaces/junctions, demonstrating that an Ohmic-contact superconducting-normal transmission line is optimal for a hybrid system with self-reflections at less than -25 dB over an operating range of 300 GHz. Finally, a unified layout and lithography construction process is proposed by which such a hybrid system could be developed in a monolithic physical system on a hybrid substrate while maintaining material and layout integrity under varying process temperatures.
8

Electrical Transport Measurement of Niobium Thin Superconducting Film Above An Array of Magnetic Quantum Dots

SONG, YONG 25 August 2008 (has links)
No description available.
9

Modification of Iron pnictide and MgB2 thin films using focused He+ ion beam irradiation for superconducting devices

Kasaei, Leila January 2019 (has links)
Continued pursuit of better superconducting devices and an understanding of how the focused ion beam evolves in a complex material are the primary motivations behind this work. The materials of interest are MgB2 and Co-doped Ba122. Superconducting properties of MgB2 were discovered in 2001. It is the first superconductor recognized as a multigap superconductor. Owing to its high Tc of ~39K, electronic circuits based on this material are expected to operate at a much higher temperature (~25 K) than low-temperature superconductors, using compact cryocoolers. Co-doped Ba122 is also a multigap superconductor which belongs to Fe-based superconductor (FeSC) family. The undoped Ba122 compound is a metal exhibiting antiferromagnetism which coexists with superconducting phase up to a certain doping level. The optimally electron-doped BaFe2As2 exhibits the transition temperature Tc of ~21 K which corresponds to the top of the “dome” in the phase diagram. While the Fe-based SC may not signify a particular advance in terms of practical applications, many unique aspects make them worth studying. In particular, the superconducting gap symmetry and structures which appear to be quite different from family to family and not yet fully understood. We report on investigating the normal-state, and superconducting properties of Co-doped BaFe2As2 and MgB2 thin films irradiated at room temperature using a 30-keV focused He+ ion beam in helium ion microscope (HIM). R-T measurement was carried out to extract the dose dependence for Tc and resistivity p0 of the irradiated region. We observed an increase in p0 and a decrease in Tc down to complete suppression of superconductivity for both materials, although the trend of the changes was quite different. In addition, for Ba122, the data for ΔTc ⁄ Tc0 versus measured change in resistivity favors s± over s++ symmetry. Using TRIM software, the projected range and the damage density distribution of the He+ ions were tracked in the samples. Single track irradiation sites for MgB2 sample were characterized using FIB extraction/TEM. The TEM micrographs reveal the subsurface damage density contours that evolve with increasing dose. The Josephson effect is a unique phenomenon that gives direct access to the phase difference �� of the macroscopic wave functions that describe the superconducting state. Josephson junction is also appealing for engineering application in superconducting electronics. Having found the dose at which complete suppression of Tc occurs from the first part of the study, a fabrication process was developed to produce planar Josephson junctions from MgB2 and Co-doped Ba122. The Josephson coupling across the barrier for both materials was observed. MgB2 Josephson junctions showed resistivity shunted junction (RSJ) I-V curve with excellent uniformity and reproducibility. We have also demonstrated tens of planar MgB2 Josephson junctions operating coherently in series arrays. 60 Josephson junction series arrays successfully developed with less than 4% spread in critical current at 12 K. Under microwave radiation, flat giant Shapiro steps up to 150 μA width appear at voltages Vn=NnΦ0f, where N is the number of junction in the array, �� is an integer representing Shapiro step index, and f is the applied microwave frequency. The uniformity and close spacing of JJs in the arrays are significantly better than MgB2 multi-junction devices made by other techniques. It has been a huge success in showing the feasibility of this technology for pursuing superconducting digital electronics, Josephson voltage standards and arbitrary function generators in particular, in MgB2 with ≥ 20K operating temperature. / Physics
10

Quantum phase and charge in Josephson junction chains / Dynamique quantique de la phase et de la charge dans les chaînes des jonctions Josephson

Weissl, Thomas 28 October 2014 (has links)
Dans cette thèse intitulé "Dynamique quantique de la phase et de la charge dans des chaînes des jonctionsJosephson", une étude expérimentale et une description théorique des effets quantiques des phases et descharges dans les chaînes de jonctions Josephson est présenté.La dynamique des chaînes de jonctions est dominé par deux échelles d'energie: l'energie Josephsonrelié a la superposition des fonctions d'ondes de deux électrodes et l'energie de charge relié a l'énergieélectrostatique des charges sur les deux électrodes. La réalisation d'un état quasi-classique de la chargenécessite une énergie de charge importante pour diminuer lesfluctuation quantique de la charge. En plus,le temps de relaxations de la jonctions dois être augmenté par un environnement a haute impédance.Un état de charges localisé a été réalisé sur une jonctions Josephson dans un environnement inductiveréalisé par une chaîne de jonction Josephson. L'état de charge localisé se manifeste par l'apparition d'undomaine a haute résistances dans les caractéristques courant-tension.Une chaînes des jonctions n'est pas une inductances parfaite. Des résonances electro-magnétique lié a lacapacité vers la masse des îlots supra-conducteurs altèrent la localisation de charge.Une characterisation des effets de pertes et des non-lineartés de ces résonances a été effectué. / In this thesis entitled ' Quantum phase and charge dynamics in Josephson junction chains ' an experimental study and theoretical description of quantum effects of phases and charges in chains of Josephsonjunctions is presented.The dynamics of Josephson junction chains are dominated by two different energy scales: the Josephsonenergy, which is related to the overlap of the superconducting wave functions of the two superconductorsforming the junction and the charging energy that is related to the electrostatic energy of the Cooper-pairs on the islands. The realization of a well-defined charge state on a Josephson junction requires a highcharging energy to suppress the quantumfluctuations of the charge. In addition, the charge relaxationtimes must be increased by inserting the junction in a high impedance environment.We have realized such a well-defined charge state on a Josephson junction in an inductive environmentthat is formed by a Josephson junction chain. The localized charge state manifest itself by the appearanceof a high resistive regime in the current-voltage characteristic.A Josephson junction chain is however not a perfect inductor. Electromagnetic resonances related withthe finite ground capacitance of the superconducting islands influence the charge localization.We have characterized the effect of losses and nonlinearities on the electromagnetic resonances of Josephson junction chains in microwave spectroscopy measurements.

Page generated in 0.0707 seconds