• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 10
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 14
  • 12
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Nonlinear Transient Approach for Morton Synchronous Rotordynamic Instability and Catcher Bearing Life Predictions

Lee, Jung Gu 2012 May 1900 (has links)
This dissertation deals with three research topics; i) the catcher bearings life prediction method, ii) the Morton effect, and iii) the two dimensional modified Reynolds equation. Firstly, catcher bearings (CB) are an essential component for rotating machine with active magnetic bearings (AMBs) suspensions. The CB's role is to protect the magnetic bearing and other close clearance component in the event of an AMB failure. The contact load, the Hertzian stress, and the sub/surface shear stress between rotor, races, and balls are calculated, using a nonlinear ball bearing model with thermal growth, during the rotor drop event. Fatigue life of the CB in terms of the number of drop occurrences prior to failure is calculated by applying the Rainflow Counting Algorithm to the sub/surface shear stress-time history. Numerical simulations including high fidelity bearing models and a Timoshenko beam finite element rotor model show that CB life is dramatically reduced when high-speed backward whirl occurs. Secondly, the theoretical models and simulation results about the synchronous thermal instability phenomenon known as Morton Effect is presented in this dissertation. A transient analysis of the rotor supported by tilting pad journal bearing is performed to obtain asymmetric temperature distribution of the journal by solving variable viscosity Reynolds equation, energy equation, heat conduction equation, and equations of motion for rotor. The tilting pad bearing is fully nonlinear model. In addition, thermal mode approach and staggered integration scheme are utilized in order to reduce computation time. The simulation results indicate that the temperature of the journal varies sinusoidally along the circumferential direction and linearly across the diameter, and the vibration envelope increased and decreased, which considers as a limit cycle that is stable oscillation of the envelope of the amplitude of synchronous vibration. Thirdly, the Reynolds equation plays an important role to predict pressure distribution in the fluid film for the fluid film bearing analysis. One of the assumptions on the Reynolds equation is that the viscosity is independent of pressure. This assumption is still valid for most fluid film bearing applications, in which the maximum pressure is less than 1 GPa. In elastohydrodynamic lubrication (EHL) which the lubricant is subjected to extremely high pressure, however, the pressure independent viscosity assumption should be reconsidered. With considering pressure-dependent viscosity, the 2D modified Reynolds equation is derived in this study. The solutions of 2D modified Reynolds equation is compared with that of the classical Reynolds equation for the plain journal bearing and ball bearing cases. The pressure distribution obtained from modified equation is slightly higher pressures than the classical Reynolds equations. / PDF file replaced 10-21-2012 at the request of the Thesis Office.
12

Measurements Versus Predictions for the Static and Dynamic Characteristics of a Four-pad Rocker-pivot, Tilting-pad Journal Bearing

Tschoepe, David 1987- 14 March 2013 (has links)
Measured and predicted static and dynamic characteristics are provided for a four-pad, rocker-pivot, tilting-pad journal bearing in the load-on-pad and load-between-pad orientations. The bearing has the following characteristics: 4 pads, .57 pad pivot offset, 0.6 L/D ratio, 60.33 mm (2.375in) pad axial length, 0.08255 mm (0.00325 in) radial clearance in the load-on-pad orientation, and 0.1189 mm (0.00468 in) radial clearance in the load-between-pad orientation. Tests were conducted on a floating test bearing design with unit loads ranging from 0 to 2903 kPa (421.1 psi) and speeds from 6.8 to 13.2 krpm. For all rotor speeds, hot-clearance measurements were taken to show the reduction in bearing clearance due to thermal expansion of the shaft and pads during testing. As the testing conditions get hotter, the rotor, pads, and bearing expand, decreasing radial bearing clearance. Hot-clearance measurements showed a 16-25% decrease in clearance compared to a clearance measurement at room temperature. For all test conditions, dynamic tests were performed over a range of excitation frequencies to obtain complex dynamic stiffness coefficients as a function of frequency. The direct real dynamic stiffness coefficients were then fitted with a quadratic function with respect to frequency. From the curve fit, the frequency dependence was captured by including a virtual-mass matrix [M] to produce a frequency independent [K][C][M] model. The direct dynamic stiffness coefficients for the load-on-pad orientation showed significant orthotropy, while the load-between-pad did not. The load-between-pad showed slight orthotropy as load increased. Experimental cross-coupled stiffness coefficients were measured in both load orientations, but were of the same sign and significantly less than direct stiffness coefficients. In both orientations the imaginary part of the measured dynamic stiffness increased linearly with increasing frequency, allowing for frequency independent direct damping coefficients. Rotordynamic coefficients presented were compared to predictions from two different Reynolds-based models. Both models showed the importance of taking into account pivot flexibility and different pad geometries (due to the reduction in bearing clearance during testing) in predicting rotordynamic coefficients. If either of these two inputs were incorrect, then predictions for the bearings impedance coefficients were very inaccurate. The main difference between prediction codes is that one of the codes incorporates pad flexibility in predicting the impedance coefficients for a tilting-pad journal bearing. To look at the effects that pad flexibility has on predicting the impedance coefficients, a series of predictions were created by changing the magnitude of the pad's bending stiffness. Increasing the bending stiffness used in predictions by a factor of 10 typically caused a 3-11% increase in predicted Kxx and Kyy, and a 10-24% increase in predicted Cxx and Cyy. In all cases, increasing the calculated bending stiffness from ten to a hundred times the calculated value caused slight if any change in Kxx, Kyy, Cxx, and Cyy. For a flexible pad an increase in bending stiffness can have a large effect on predictions; however, for a more rigid pad an increase in pad bending stiffness will have a much lesser effect. Results showed that the pad's structural bending stiffness can be an important factor in predicting impedance coefficients. Even though the pads tested in this thesis are extremely stiff, changes are still seen in predictions when the magnitude of the pad?s bending stiffness is increased, especially in Cxx, and Cyy. The code without pad flexibility predicted Kxx and Kyy much more accurately than the code with pad flexibility. The code with pad flexibility predicts Cxx more accurately, while the code without pad flexibility predicted Cyy more accurately. Regardless of prediction Code used, the Kxx and Kyy were over-predicted at low loads, but predicted more accurately as load increased. Cxx, and Cyy were modeled very well in the load-on-pad orientation, while slightly overpredicted in the load-between-pad orientation. For solid pads, like the ones tested here, both codes do a decent job at predicting impedance coefficients
13

Measured and Predicted Rotor-Pad Transfer Functions for a Rocker-Pivot Tilting-Pad Journal Bearing

Wilkes, Jason Christopher 2011 December 1900 (has links)
Many researchers have compared predicted stiffness and damping coefficients for tilting-pad journal bearings (TPJBs) to measurements. Most have found that direct damping is consistently overpredicted. The thrust of this research is to explain the difference between measured and predicted stiffness and damping coefficients for TPJBs, and to provide some confidence to designers that TPJB dynamic coefficients can be accurately predicted. Most analytical models for TPJBs are based on the assumption that explicit dependence on pad motion can be eliminated by assuming harmonic rotor motion such that the amplitude and phase of pad motions resulting from radial and transverse rotor motions are predicted by rotor-pad transfer functions. In short, these transfer functions specify the amplitude and phase of pad motion (angular, radial, translational, etc.) in response to an input rotor motion. A new pad perturbation model is developed including the effects of angular, radial, and circumferential pad motion and changes in pad clearance due to pad bending compliance. Though all of these pad variables have previously been included in different analyses, there are no publications containing perturbations of all four variables. In addition, previous researchers have only perturbed the journal, while both the bearing and journal motions are perturbed in the present analysis, and the applicability of comparing rotor-perturbed bearing impedance predictions to impedances measured on a bearing-perturbed test rig is discussed. This perturbation model was implemented in a Reynolds-based TPJB code to predict the frequency-dependent bearing impedances and rotor-pad transfer functions. Direct measurements of pad motion during test excitation were recorded to produce measured transfer functions between rotor and pad motion, and a comparison between these measurements and predictions is given. Motion probes were added to the loaded pad (having the static load vector directed through its pivot) of a 5-pad TPJB to obtain accurate measurement of pad radial and tangential motion, as well as tilt, yaw, and pitch. Strain gages were attached to the side of the loaded pad to measure static and dynamic bending strains, which were then used to determine static and dynamic changes in pad curvature (pad clearance). Good agreement was found between the amplitude of the measured and predicted transfer functions concerning radial and transverse pad motions throughout the range of speeds and loads tested, while pad tilt was moderately underpredicted. For the bearing investigated, radial pad motions resulting from pivot compliance were as large as 60% of the radial component of shaft motion when operating at 4400 rpm under heavily loaded conditions. Hence, if a dynamic load applied to the shaft resulted in a shaft displacement of 25 microns (1 mil), the pad would displace radially 15 microns (0.6 mils), and the fluid film height would only decrease by 10 microns (0.4 mils). The consequence of this pad motion is that fluid film stiffness and damping forces produced by relative rotor-pad motions are significantly reduced, resulting in a bearing having significantly less direct stiffness and damping than predicted. A similar effect occurs when shaft motions produce significant changes in pad clearance due to pad compliance. For the pad tested here, the measurements show that predicting TPJB stiffness and damping coefficients without accounting for pad and pivot compliance will produce large errors, and is not advised. Transverse pad motion was predicted and observed. Based on phase measurements, this motion is lightly damped, and appears to be caused by pivot deflection instead of slipping. Despite observing a lightly damped phase change, an increase in magnitude at this natural frequency was not observed. Predicted direct stiffness and damping for unit loads from 0-3200 kPa (0-450 psi) fit through 1.5× running speed are within 18% of measurements at 4400 rpm, while predictions at 10200 rpm are within 10% of measurements. This is a significant improvement on the accuracy of predictions cited in literature. Comparisons between predictions from the developed bearing model neglecting pad, pivot, and pad and pivot flexibility show that predicted direct stiffness and damping coefficients for a model having a rigid pad and pivot are overestimated, respectively, by 202% and 811% at low speeds and large loads, by 176% and 513% at high speeds and high loads, and by 51% and 182% at high speeds and light loads. While the reader is likely questioning the degree to which these predictions are overestimated in regard to previous comparisons, these predictions are based on measured operating bearing clearances, which are 20-30% smaller than the cold bearing clearances that previous comparisons were based on. The effect of employing a full bearing model (retaining all of the pad degrees of freedom) versus a reduced bearing model (where only journal degrees of freedom are retained) in a stability calculation for a realistic rotor-bearing system is assessed. For the bearing tested, the bearing coefficients reduced at the frequency of the unstable eigenvalue (subsynchronously reduced) predicted a destabilizing cross-coupled stiffness coefficient at the onset of instability within 1% of the full model, while synchronously reduced coefficients for the lightly loaded bearing required 25% more destabilizing cross-coupled stiffness than the full model to cause system instability. This overestimation of stability is due to an increase in predicted direct damping at the synchronous frequency over the subsynchronously reduced value. This increase in direct damping with excitation frequency was also seen in highly loaded test data at frequencies below approximately 2×running speed, after which direct damping decreased with increasing excitation frequency. This effect was more pronounced in predictions, occurring at all load and speed combinations. The same stability calculation was performed using measured stiffness and damping coefficients at synchronous and subsynchronous frequencies at 10200 rpm. It was found that both the synchronously measured stiffness and damping and predictions using the full bearing model were more conservative than the model using subsynchronously measured stiffness and damping. This outcome contrasts with the comparison between models using synchronously and subsynchronously reduced impedance predictions, which showed the subsynchronously reduced model to be the most conservative. This contrast results from a predicted increase in damping with increasing excitation frequency at all speeds and loads, while this increase in damping with increasing excitation frequency was only measured at the most heavily loaded conditions.
14

Konstrukce zařízení pro nanášení polymerních povlaků / Design of polymer coating sprayer

Meluzín, Ondřej January 2017 (has links)
This master’s thesis is aimed on design of polymer coating machine that sprays polymer sliding coatings onto surfaces of crankshaft journal bearings used in car engines. At the beginning of this master’s thesis, basic overview of crankshaft bearings design and materials that are used for sliding coatings is given. Then suitable manufacturing technologies for different materials of coatings are described. After describing basic principles of coating technologies and how crankshaft bearings work, main components used for design of the spraying machine are introduced. Three prototypes of the machine are created in virtual environment to verify ergonomics of control and to fulfill safety requirements. In main part of the thesis, description of all parts and subassemblies, such as frame, spraying circuit, pneumatic regulators and safety features is given. Also functions of all parts of the machine are explained in details. Moreover system for handling and manipulation with coated bearings during all necessary technological operations was created. In addition functionality of the machine was verified and checked by spraying of polymer coating on testing samples and crankshaft bearings.
15

Modelování mazací soustavy turbodmychadla / Modelling the Oil Lubrication System of Turbocharger

Breckl, Lukáš January 2018 (has links)
The diploma thesis contains a research part focused on turbocharger construction, engine lubrication system and turbocharger, basic physical properties of lubricating oils and hydrodynamics. The purpose of this thesis is to create analytical and CFD computational model of turbocharger lubrication system. Output pressures and the loss of specific energy are determined.
16

Experimentální studium dynamiky kluzných ložisek / Experimental study of journal bearings dynamics

Tkadlec, Josef January 2019 (has links)
This work deals with experimental analysis of fluid film instability in rotor bearing systems stored in hydrodynamic plain bearings with focus on bearing surface modification. The experiments were performed on a journal bearing dynamics simulator. The aim was to determine the influence of individual operating parameters on the occurrence and course of turbulence instability. The emphasis here was on the effect of surface micro textures. The work also included the preparation of textured samples. Experiments were divided into experiments monitoring the influence of temperature, pressure, bearing geometry and surface modification. The output of the individual experiments were the values of the threshold speed of formation and termination of instability or the magnitude of the amplitude depending on the above described parameters. These values were plotted in graphs. This data was then confronted with previously published articles. The results showed that instabilityin rotor systems is very sensitive to temperature, pressure and bearing geometry changes. The fundamental influence on the unstable behavior of the rotor system has been demonstrated by the use of textured surfaces, where the threshold speed was significantly shifted to a higher speed range compared to the non-textured bearing.
17

Experimental and theoretical determination of hydrostatic/hybrid journal bearing rotordynamic coefficients

Sawicki, Jerezy Teodor January 1992 (has links)
No description available.
18

Actively Controllable Hydrodynamic Journal Bearing Design Using Magnetorheological Fluids

moles, nathaniel caleb January 2015 (has links)
No description available.
19

Nonlinear dynamic analysis of vertical rotors with tilting pad journal bearings

Benti, Gudeta January 2021 (has links)
Swedish Hydropower Centre - SVC
20

High Pressure Performance of Foil Journal Bearings in Various Gases

Briggs, Maxwell H. January 2008 (has links)
No description available.

Page generated in 0.0748 seconds