Spelling suggestions: "subject:"bifold crossvalidation"" "subject:"bifold crossvalidations""
1 |
Comparative Data Analytic Approach for Detection of DiabetesSood, Radhika January 2018 (has links)
No description available.
|
2 |
Advanced Statistical Methodologies in Determining the Observation Time to Discriminate Viruses Using FTIRLuo, Shan 13 July 2009 (has links)
Fourier transform infrared (FTIR) spectroscopy, one method of electromagnetic radiation for detecting specific cellular molecular structure, can be used to discriminate different types of cells. The objective is to find the minimum time (choice among 2 hour, 4 hour and 6 hour) to record FTIR readings such that different viruses can be discriminated. A new method is adopted for the datasets. Briefly, inner differences are created as the control group, and Wilcoxon Signed Rank Test is used as the first selecting variable procedure in order to prepare the next stage of discrimination. In the second stage we propose either partial least squares (PLS) method or simply taking significant differences as the discriminator. Finally, k-fold cross-validation method is used to estimate the shrinkages of the goodness measures, such as sensitivity, specificity and area under the ROC curve (AUC). There is no doubt in our mind 6 hour is enough for discriminating mock from Hsv1, and Coxsackie viruses. Adeno virus is an exception.
|
3 |
Context-Sensitive Code Completion : Improving Predictions with Genetic AlgorithmsOrding, Marcus January 2016 (has links)
Within the area of context-sensitive code completion there is a need for accurate predictive models in order to provide useful code completion predictions. The traditional method for optimizing the performance of code completion systems is to empirically evaluate the effect of each system parameter individually and fine-tune the parameters. This thesis presents a genetic algorithm that can optimize the system parameters with a degree-of-freedom equal to the number of parameters to optimize. The study evaluates the effect of the optimized parameters on the prediction quality of the studied code completion system. Previous evaluation of the reference code completion system is also extended to include model size and inference speed. The results of the study shows that the genetic algorithm is able to improve the prediction quality of the studied code completion system. Compared with the reference system, the enhanced system is able to recognize 1 in 10 additional previously unseen code patterns. This increase in prediction quality does not significantly impact the system performance, as the inference speed remains less than 1 ms for both systems. / Inom området kontextkänslig kodkomplettering finns det ett behov av precisa förutsägande modeller för att kunna föreslå användbara kodkompletteringar. Den traditionella metoden för att optimera prestanda hos kodkompletteringssystem är att empiriskt utvärdera effekten av varje systemparameter individuellt och finjustera parametrarna. Det här arbetet presenterar en genetisk algoritm som kan optimera systemparametrarna med en frihetsgrad som är lika stor som antalet parametrar att optimera. Studien utvärderar effekten av de optimerade parametrarna på det studerade kodkompletteringssystemets pre- diktiva kvalitet. Tidigare utvärdering av referenssystemet utökades genom att även inkludera modellstorlek och slutledningstid. Resultaten av studien visar att den genetiska algoritmen kan förbättra den prediktiva kvali- teten för det studerade kodkompletteringssystemet. Jämfört med referenssystemet så lyckas det förbättrade systemet korrekt känna igen 1 av 10 ytterligare kodmönster som tidigare varit osedda. Förbättringen av prediktiv kvalietet har inte en signifikant inverkan på systemet, då slutledningstiden förblir mindre än 1 ms för båda systemen.
|
4 |
Modelos de agrupamento e classificação para os bairros da cidade do Rio de Janeiro sob a ótica da Inteligência Computacional: Lógica Fuzzy, Máquinas de Vetores Suporte e Algoritmos Genéticos / Clustering and classification models for the neighborhoods of the city of Rio de Janeiro from the perspective of Computational Intelligence: Fuzzy Logic, Support Vector Machine and Genetic AlgorithmsNatalie Henriques Martins 19 June 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A partir de 2011, ocorreram e ainda ocorrerão eventos de grande repercussão para a cidade do Rio de Janeiro, como a conferência Rio+20 das Nações Unidas e eventos esportivos de grande importância mundial (Copa do Mundo de Futebol, Olimpíadas e Paraolimpíadas). Estes acontecimentos possibilitam a atração de recursos financeiros para a cidade, assim como a geração de empregos, melhorias de infraestrutura e valorização imobiliária, tanto territorial
quanto predial. Ao optar por um imóvel residencial em determinado bairro, não se avalia apenas o imóvel, mas também as facilidades urbanas disponíveis na localidade. Neste contexto, foi possível definir uma interpretação qualitativa linguística inerente aos bairros da cidade do Rio de Janeiro, integrando-se três técnicas de Inteligência Computacional para a avaliação de benefícios: Lógica Fuzzy, Máquina de Vetores Suporte e Algoritmos Genéticos. A base de dados foi construída com informações da web e institutos governamentais, evidenciando o custo de imóveis residenciais, benefícios e fragilidades dos bairros da cidade. Implementou-se inicialmente a Lógica Fuzzy como um modelo não supervisionado de agrupamento através das Regras Elipsoidais pelo Princípio de Extensão com o uso da Distância de Mahalanobis, configurando-se de forma inferencial os grupos de designação linguística (Bom, Regular e Ruim) de acordo com doze características urbanas. A partir desta discriminação, foi tangível o uso da Máquina de Vetores Suporte integrado aos Algoritmos Genéticos como um método supervisionado, com o fim de buscar/selecionar o menor subconjunto das variáveis presentes no agrupamento que melhor classifique os bairros (Princípio da Parcimônia). A análise das taxas de erro possibilitou a escolha do melhor modelo de classificação com redução do espaço de variáveis, resultando em um subconjunto que contém informações sobre: IDH, quantidade de linhas de ônibus, instituições de ensino, valor m médio, espaços ao ar livre, locais de entretenimento e crimes. A modelagem que combinou as três técnicas de Inteligência Computacional hierarquizou os bairros do Rio de Janeiro com taxas de erros aceitáveis, colaborando na tomada de decisão para a compra e venda de imóveis residenciais. Quando se trata de transporte público na cidade em questão, foi possível perceber que a malha rodoviária ainda é a prioritária
|
5 |
Modelling Implied Volatility of American-Asian Options : A Simple Multivariate Regression ApproachRadeschnig, David January 2015 (has links)
This report focus upon implied volatility for American styled Asian options, and a least squares approximation method as a way of estimating its magnitude. Asian option prices are calculated/approximated based on Quasi-Monte Carlo simulations and least squares regression, where a known volatility is being used as input. A regression tree then empirically builds a database of regression vectors for the implied volatility based on the simulated output of option prices. The mean squared errors between imputed and estimated volatilities are then compared using a five-folded cross-validation test as well as the non-parametric Kruskal-Wallis hypothesis test of equal distributions. The study results in a proposed semi-parametric model for estimating implied volatilities from options. The user must however be aware of that this model may suffer from bias in estimation, and should thereby be used with caution.
|
6 |
Modelos de agrupamento e classificação para os bairros da cidade do Rio de Janeiro sob a ótica da Inteligência Computacional: Lógica Fuzzy, Máquinas de Vetores Suporte e Algoritmos Genéticos / Clustering and classification models for the neighborhoods of the city of Rio de Janeiro from the perspective of Computational Intelligence: Fuzzy Logic, Support Vector Machine and Genetic AlgorithmsNatalie Henriques Martins 19 June 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A partir de 2011, ocorreram e ainda ocorrerão eventos de grande repercussão para a cidade do Rio de Janeiro, como a conferência Rio+20 das Nações Unidas e eventos esportivos de grande importância mundial (Copa do Mundo de Futebol, Olimpíadas e Paraolimpíadas). Estes acontecimentos possibilitam a atração de recursos financeiros para a cidade, assim como a geração de empregos, melhorias de infraestrutura e valorização imobiliária, tanto territorial
quanto predial. Ao optar por um imóvel residencial em determinado bairro, não se avalia apenas o imóvel, mas também as facilidades urbanas disponíveis na localidade. Neste contexto, foi possível definir uma interpretação qualitativa linguística inerente aos bairros da cidade do Rio de Janeiro, integrando-se três técnicas de Inteligência Computacional para a avaliação de benefícios: Lógica Fuzzy, Máquina de Vetores Suporte e Algoritmos Genéticos. A base de dados foi construída com informações da web e institutos governamentais, evidenciando o custo de imóveis residenciais, benefícios e fragilidades dos bairros da cidade. Implementou-se inicialmente a Lógica Fuzzy como um modelo não supervisionado de agrupamento através das Regras Elipsoidais pelo Princípio de Extensão com o uso da Distância de Mahalanobis, configurando-se de forma inferencial os grupos de designação linguística (Bom, Regular e Ruim) de acordo com doze características urbanas. A partir desta discriminação, foi tangível o uso da Máquina de Vetores Suporte integrado aos Algoritmos Genéticos como um método supervisionado, com o fim de buscar/selecionar o menor subconjunto das variáveis presentes no agrupamento que melhor classifique os bairros (Princípio da Parcimônia). A análise das taxas de erro possibilitou a escolha do melhor modelo de classificação com redução do espaço de variáveis, resultando em um subconjunto que contém informações sobre: IDH, quantidade de linhas de ônibus, instituições de ensino, valor m médio, espaços ao ar livre, locais de entretenimento e crimes. A modelagem que combinou as três técnicas de Inteligência Computacional hierarquizou os bairros do Rio de Janeiro com taxas de erros aceitáveis, colaborando na tomada de decisão para a compra e venda de imóveis residenciais. Quando se trata de transporte público na cidade em questão, foi possível perceber que a malha rodoviária ainda é a prioritária
|
7 |
Automatic Flight Maneuver Identification Using Machine Learning MethodsBodin, Camilla January 2020 (has links)
This thesis proposes a general approach to solve the offline flight-maneuver identification problem using machine learning methods. The purpose of the study was to provide means for the aircraft professionals at the flight test and verification department of Saab Aeronautics to automate the procedure of analyzing flight test data. The suggested approach succeeded in generating binary classifiers and multiclass classifiers that identified six flight maneuvers of different complexity from real flight test data. The binary classifiers solved the problem of identifying one maneuver from flight test data at a time, while the multiclass classifiers solved the problem of identifying several maneuvers from flight test data simultaneously. To achieve these results, the difficulties that this time series classification problem entailed were simplified by using different strategies. One strategy was to develop a maneuver extraction algorithm that used handcrafted rules. Another strategy was to represent the time series data by statistical measures. There was also an issue of an imbalanced dataset, where one class far outweighed others in number of samples. This was solved by using a modified oversampling method on the dataset that was used for training. Logistic Regression, Support Vector Machines with both linear and nonlinear kernels, and Artifical Neural Networks were explored, where the hyperparameters for each machine learning algorithm were chosen during model estimation by 4-fold cross-validation and solving an optimization problem based on important performance metrics. A feature selection algorithm was also used during model estimation to evaluate how the performance changes depending on how many features were used. The machine learning models were then evaluated on test data consisting of 24 flight tests. The results given by the test data set showed that the simplifications done were reasonable, but the maneuver extraction algorithm could sometimes fail. Some maneuvers were easier to identify than others and the linear machine learning models resulted in a poor fit to the more complex classes. In conclusion, both binary classifiers and multiclass classifiers could be used to solve the flight maneuver identification problem, and solving a hyperparameter optimization problem boosted the performance of the finalized models. Nonlinear classifiers performed the best on average across all explored maneuvers.
|
Page generated in 0.0896 seconds