• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 843
  • 316
  • 175
  • 113
  • 44
  • 41
  • 27
  • 24
  • 20
  • 18
  • 12
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1900
  • 1140
  • 414
  • 375
  • 373
  • 299
  • 262
  • 174
  • 173
  • 172
  • 171
  • 170
  • 170
  • 167
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

EVALUATION OF SOLID STATE ACCELEROMETER SENSOR FOR EFFECTIVE POSITION ESTIMATION

Lele, Meenal Anand 22 November 2010 (has links)
Inertial sensors such as Gyroscope and Accelerometer show systematic as well as random errors in the measurement. Furthermore, double integration method shows accumulation of error in position estimation due to inherent accelerometer bias drift. The primary objective of this research was to evaluate ADXL 335 acceleration sensor for better position estimation using acceleration bias drift error model. In addition, measurement data was recorded with four point rotation test for investigation of error characteristics. The fitted model was validated by using nonlinear regression analysis. The secondary objective was to examine the effect of bias drift and scale factor errors by introducing error model in Kalman Filter smoothing algorithm. The study showed that the accelerometer may be used for short distance mobile robot position estimation. This research would also help to establish a generalized test procedure for evaluation of accelerometer in terms of sensitivity, accuracy and data reliability.
172

An Improved Path Integration Mechanism Using Neural Fields Which Implement A Biologically Plausible Analogue To A Kalman Filter

Connors, Warren Anthoney 22 February 2013 (has links)
Interaction with the world is necessary for both animals and robots to complete tasks. This interaction requires a sense of self, or the orientation of the robot or animal with respect to the world. Creating and maintaining this model is a task which is easily maintained by animals, however can be difficult for robots due to the uncertainties in the world, sensing, and movement of the robot. This estimation difficulty is increased in sensory deprived environments, where no external, inputs are available to correct the estimate. Therefore, self generated cues of movement are needed, such as vestibular input in an animal, or accelerometer input in a robot. In spite of the difficulties, animals can easily maintain this model. This leads to the question of whether we can learn from nature by examining the biological mechanisms for pose estimation in animals. Previous work has shown that neural fields coupled with a mechanism for updating the estimate can be used to maintain a pose estimate through a sustained area of activity called a packet. Analysis of this mechanism however has shown conditions where the field can provide unexpected results or break down due to high accelerations input into the field. This analysis illustrates the challenges of controlling the activity packet size under strong inputs, and a limited speed capability using the existing mechanism. As a result of this, a novel weight combination method is proposed to provide a higher speed and increased robustness. The results of this is an increase of over two times the existing speed capability, and a resistance of the field to break down under strong rotational inputs. This updated neural field model provides a method for maintaining a stable pose estimate. To show this, a novel comparison between the proposed neural field model and the Kalman filter is considered, resulting in comparable performance in pose prediction. This work shows that an updated neural field model provides a biologically plausible pose prediction model using Bayesian inference, providing a biological analogue to a Kalman filter.
173

Application of the Ensemble Kalman Filter to Estimate Fracture Parameters in Unconventional Horizontal Wells by Downhole Temperature Measurements

Gonzales, Sergio Eduardo 16 December 2013 (has links)
The increase in energy demand throughout the world has forced the oil industry to develop and expand on current technologies to optimize well productivity. Distributed temperature sensing has become a current and fairly inexpensive way to monitor performance in hydraulic fractured wells in real time by the aid of fiber optic. However, no applications have yet been attempted to describe or estimate the fracture parameters using distributed temperature sensing as the observation parameter. The Ensemble Kalman Filter, a recursive filter, has proved to be an effective tool in the application of inverse problems to determine parameters of non-linear models. Even though large amounts of data are acquired as the information used to apply an estimation, the Ensemble Kalman Filter effectively minimizes the time of operation by only using “snapshots” of the ensembles collected by various simulations where the estimation is updated continuously to be calibrated by comparing it to a reference model. A reservoir model using ECLIPSE is constructed that measures temperature throughout the wellbore. This model is a hybrid representation of what distributed temperature sensing measures in real-time throughout the wellbore. Reservoir and fracture parameters are selected in this model with similar properties and values to an unconventional well. However, certain parameters such as fracture width are manipulated to significantly diminish the computation time. A sensitivity study is performed for all the reservoir and fracture parameters in order to understand which parameters require more or less data to allow the Ensemble Kalman Filter to arrive to an acceptable estimation. Two fracture parameters are selected based on their low sensitivity and importance in fracture design to perform the Ensemble Kalman Filter on various simulations. Fracture permeability has very low sensitivity. However, when applying the estimation the Ensemble Kalman Filter arrives to an acceptable estimation. Similarly fracture halflength, with medium sensitivity, arrives to an acceptable estimation around the same number of integration steps. The true effectiveness of the Ensemble Kalman Filter is presented when both parameters are estimated jointly and arrive to an acceptable estimation without being computationally expensive. The effectiveness of the Ensemble Kalman Filter is directly connected to the quantity of data acquired. The more data available to run simulations, the better and faster the filter performs.
174

New Algorithms in Rigid-Body Registration and Estimation of Registration Accuracy

Hedjazi Moghari, MEHDI 28 September 2008 (has links)
Rigid-body registration is an important research area with major applications in computer-assisted and image-guided surgery. In these surgeries, often the relationship between the preoperative and intraoperative images taken from a patient must be established. This relationship is computed through a registration process, which finds a set of transformation parameters that maps some point fiducials measured on a patient anatomy to a preoperative model. Due to point measurement error caused by medical measurement instruments, the estimated registration parameters are imperfect and this reduces the accuracy of the performed registrations. Medical measurement instruments often perturb the collected points from the patient anatomy by heterogeneous noise. If the noise characteristics are known, they can be incorporated in the registration algorithm in order to more reliably and accurately estimate the registration parameters and their variances. Current techniques employed in rigid-body registration are primarily based on the well-known Iterative Closest Points (ICP) algorithm. Such techniques are susceptible to the existence of noise in the data sets, and are also very sensitive to the initial alignment errors. Also, the literature offers no analytical solution on how to estimate the accuracy of the performed registrations in the presence of heterogenous noise. In an effort to alleviate these problems, we propose and validate various novel registration techniques based on the Unscented Kalman Filter (UKF) algorithm. This filter is generally employed for analyzing nonlinear systems corrupted by additive heterogenous Gaussian noise. First, we propose a new registration algorithm to fit two data sets in the presence of arbitrary Gaussian noise, when the corresponding points between the two data sets are assumed to be known. Next, we extend this algorithm to perform surface-based registration, where point correspondences are not available, but the data sets are roughly aligned. A solution to multi-body point and surface-based registration problem is then proposed based on the UKF algorithm. The outputs of the proposed UKF registration algorithms are then utilized to estimate the accuracy of the performed registration. For the first time, novel derivations are presented that can estimate the distribution of registration error at a target in the presence of an arbitrary Gaussian noise. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2008-09-28 07:25:38.229
175

On-Line Optimization for a Batch-Fed Copolymerization Reactor with Partial State Measurement

OKORAFO, ONYINYE 06 October 2009 (has links)
Polymerization processes require adequate monitoring to ensure that the final product meets specification. Various on-line measuring techniques have been developed and implemented to track polymer properties in reactors. For most processes, however, on-line measurement cannot be implemented. In other situations, certain polymer properties or states might not be measurable and hence have to be estimated. This work deals with improving an on-line optimization technique and demonstrating its eff ectiveness by sensitivity analysis. In addition, state estimation is used as a tool to reconstruct states that are unavailable for measurement in a styrene and butyl methacrylate batch-fed solution free-radical copolymerization process subject to on-line optimization. A hybrid extended Kalman filter is used to observe the nonlinear dynamic system which is subject to real-time dynamic optimization. With very limited measurement information, the states of the system were reconstructed. Additional unobservable quantities were reconstructed using the process model and estimated states. / Thesis (Master, Chemical Engineering) -- Queen's University, 2009-09-28 16:02:55.974
176

Identification of linear systems using periodic inputs

Carew, Burian January 1974 (has links)
No description available.
177

A study of an on-line recursive filter applied to a milling circuit.

Barker, Ian James. January 1975 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Durban,1975.
178

On-line estimation and control of molecular weight distribution

Adebekun, Aderinola Kolawole 05 1900 (has links)
No description available.
179

Adaptive flood forecasting using weather radar data

Tomlin, Christopher Michael January 1999 (has links)
No description available.
180

Nonlinear estimation techniques for target tracking

McGinnity, Shaun Joseph January 1998 (has links)
No description available.

Page generated in 0.0172 seconds