111 |
Resilient Average and Distortion Detection in Sensor NetworksAguirre Jurado, Ricardo 15 May 2009 (has links)
In this paper a resilient sensor network is built in order to lessen the effects of a small portion of corrupted sensors when an aggregated result such as the average needs to be obtained. By examining the variance in sensor readings, a change in the pattern can be spotted and minimized in order to maintain a stable aggregated reading. Offset in sensors readings are also analyzed and compensated to help reduce a bias change in average. These two analytical techniques are later combined in Kalman filter to produce a smooth and resilient average given by the readings of individual sensors. In addition, principal components analysis is used to detect variations in the sensor network. Experiments are held using real sensors called MICAz, which are use to gather light measurements in a small area and display the light average generated in that area.
|
112 |
Detecção e rastreamento de obstáculos com uso de sensor laser de varredura. / Obstacle detection and tracking using laser 2D.Habermann, Danilo 27 July 2010 (has links)
Este trabalho apresenta um sistema de rastreamento de obstáculos, utilizando sensor laser 2D e filtro de Kalman. Este filtro não é muito eficiente em situações em que ocorrem severas perturbações na posição medida do obstáculo, como, por exemplo, um objeto rastreado passando por trás de uma barreira, interrompendo o feixe de laser por alguns instantes, tornando impossível receber do sensor as informações sobre sua posição. Este trabalho sugere um método de minimizar esse problema com o uso de um algoritmo denominado Corretor de Discrepâncias. / An obstacle detection and tracking system using a 2D laser sensor and the Kalman filter is presented. This filter is not very efficient in case of severe disturbances in the measured position of the obstacle, as for instance, when an object being tracked is behind a barrier, thus interrupting the laser beam, making it impossible to receive the sensor information about its position. This work suggests a method to minimize this problem by using an algorithm called Corrector of Discrepancies.
|
113 |
Estudo do eletrocardiograma sob uma abordagem matemática. / Electrocardiogram evaluation under a mathematical approach.Melco, Tito Coutinho 10 November 2006 (has links)
O eletrocardiograma transMITe informações com relação à passagem do pulso elétrico pelo coração e, conseqüentemente, do funcionamento deste. Desde o início da sua utilização, possibilitada pelo trabalho de Willem Einthoven criando a primeira máquina capaz de medir o pulso elétrico de forma não invasiva e com sensibilidade forte o bastante para ser capaz de produzir um gráfico proveitoso, o eletrocardiograma é muito utilizado para avaliação clínica de pacientes. Entretanto a evolução das máquinas que o descrevem não foi muito além do que o elaborado por Einthoven no início do século 20. As máquinas capazes de captar o eletrocardiograma se tornaram menores (até portáteis para algumas aplicações), gráficos passaram a ser disponibilizados em telas de vídeo (ao invés das fitas de papel) e, como maior evolução, as máquinas que observam o eletrocardiograma passaram a conseguir captar a ocorrência de um ciclo cardíaco com alta confiabilidade e, atualmente, passaram a medir também o parâmetro ST com precisão deliMITada (necessitando ajuda do operador para ajuste em alguns casos). É baseado nestes fatos que esta dissertação procura estudar algoritmos matemáticos, de forma mais focada nos modelos do impulso elétrico durante os ciclos cardíacos, e avaliar suas capacidades de interpretar parâmetros do ciclo de ECG de forma precisa e rápida para que o médico tenha prontamente os dados necessários para realizar a avaliação clínica do paciente. Em primeira análise foram estudados os algoritmos para detecção do pulso de eletrocardiograma (detecção da onda R), em seguida feito o janelamento da curva de ECG a fim de separar os ciclos cardíacos. A partir deste ponto foram analisados os modelos matemáticos gerados por equações polinomiais, Transformada de Fourier e Transformada wavelet. E, com o intuito de filtrar ruídos e gerar derivações não medidas, foi implementado um filtro de kalman em um modelo vetorial do eletrocardiograma. Para avaliar os resultados obtidos foram utilizados requisitos de desempenho declarados pelo FDA norte americano e pela norma européia IEC60601-2-51. Essas análises foram feitas através da utilização dos algoritmos gerados nas curvas provindas do banco de dados do PhisioNet. O método polinomial não foi considerado interessante na medida em que não possibilita gerar uma equação para um ciclo cardíaco, mas sim várias equações (uma para cada ponto do ciclo). Os demais métodos apresentaram melhor eficiência na medida em que foram capazes de gerar parâmetros com significado físico e possibilitando melhor caracterização de pontos importantes da curva do eletrocardiograma. / The electrocardiogram gives information related to the passage of an electric pulse through the heart and, therefore, to his state function. Since the beginning of electrocardiogram utilization, thanks to the work of Willem Einthoven building the first machine capable of measuring the electric pulse non-invasively and with sensitivity enough to be able to provide a profitable graph, it is widely used for clinical evaluation of patients. However the evolution of the machines that describes the electrocardiogram hadn´t much more advances since the elaborated by Einthoven in the beginning of the 20th century. They become smaller (even portable for some applications), the graphs are now displayed in video screens (instead of the paper strip) and, taking place as the biggest evolutions, machines that observes the electrocardiogram became able to recognize a cardiac cycle with high reliability and, more recently, became able to measure the ST parameter with liMITed precision (it needs the help of the operator to set specific measuring points in some cases). It is based in these facts that this dissertation looks for analyzing mathematic algorithms, more specifically the mathematic models of the electric impulse during the cardiac cycles, and evaluate their capacities to expound ECG parameters in a fast and reliable way in order to the physician receive promptly the data needed for his clinical evaluation of the patient. For the first step were analyzed some algorithms for electrocardiogram pulse detection (detection of R wave), in the following step were done the windowing of the ECG wave in order to separate the cardiac cycles. In this step were analyzed the mathematic models generated by polynomial equations, Fourier Transform and Wavelet Transform. And, in order to filter noises and generate leads not measure, it was implemented a kalman´s filter at a vector model. To evaluate the obtained results were used the requirements of performance given by north-american FDA and by the European rule IEC60601-2-51. These evaluations were done by executing the generated algorithms in the waves supplied by the databank PhisioNet. The polynomial method weren´t considered interesting because it weren´t able to generate an equation for the cardiac cycle, but many equations (one for each point of the cycle). The other methods showed a better efficiency since they were capable of generate parameters with physical meaning and being able to do a better characterization of the important points of the electrocardiogram wave.
|
114 |
Extended and Unscented Kalman Smoothing for Re-linearization of Nonlinear Problems with ApplicationsLowe, Matthew 30 April 2015 (has links)
The Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Ensemble Kalman Filter (EnKF) are commonly implemented practical solutions for solving nonlinear state space estimation problems; all based on the linear state space estimator, the Kalman Filter. Often, the UKF and EnKF are cited as a superior methods to the EKF with respect to error-based performance criteria. The UKF in turn has the advantage over the EnKF of smaller computational complexity. In practice however the UKF often fails to live up to this expectation, with performance which does not surpass the EKF and estimates which are not as robust as the EnKF. This work explores the geometry of alternative sigma point sets, which form the basis of the UKF, contributing several new sets along with novel methods used to generate them. In particular, completely novel systems of sigma points that preserve higher order statistical moments are found and evaluated. Additionally a new method for scaling and problem specific tuning of sigma point sets is introduced as well as a discussion of why this is necessary, and a new way of thinking about UKF systems in relation to the other two Kalman Filter methods. An Iterated UKF method is also introduced, similar to the smoothing iterates developed previously for the EKF. The performance of all of these methods is demonstrated using problem exemplars with the improvement of the contributed methods highlighted.
|
115 |
Analyzing and Modeling Low-Cost MEMS IMUs for use in an Inertial Navigation SystemBarrett, Justin Michael 30 April 2014 (has links)
Inertial navigation is a relative navigation technique commonly used by autonomous vehicles to determine their linear velocity, position and orientation in three-dimensional space. The basic premise of inertial navigation is that measurements of acceleration and angular velocity from an inertial measurement unit (IMU) are integrated over time to produce estimates of linear velocity, position and orientation. However, this process is a particularly involved one. The raw inertial data must first be properly analyzed and modeled in order to ensure that any inertial navigation system (INS) that uses the inertial data will produce accurate results. This thesis describes the process of analyzing and modeling raw IMU data, as well as how to use the results of that analysis to design an INS. Two separate INS units are designed using two different micro-electro-mechanical system (MEMS) IMUs. To test the effectiveness of each INS, each IMU is rigidly mounted to an unmanned ground vehicle (UGV) and the vehicle is driven through a known test course. The linear velocity, position and orientation estimates produced by each INS are then compared to the true linear velocity, position and orientation of the UGV over time. Final results from these experiments include quantifications of how well each INS was able to estimate the true linear velocity, position and orientation of the UGV in several different navigation scenarios as well as a direct comparison of the performances of the two separate INS units.
|
116 |
Visual Simultaneous Localization and Mapping for a tree climbing robotWisely Babu, Benzun Pious 19 September 2013 (has links)
"This work addresses the problem of generating a 3D mesh grid model of a tree by a climbing robot for tree inspection. In order to generate a consistent model of the tree while climbing, the robot needs to be able to track its location while generating the model. Hence we explored this problem as a subset of Simultaneous Localization and Mapping problem. The monocular camera based Visual Simultaneous Localization and Mapping(VSLAM) algorithm was adopted to map the features on the tree. Multi-scale grid based FAST feature detector combined with Lucas Kande Optical flow was used to extract features from the tree. Inverse depth representation of feature was selected to seamlessly handle newly initialized features. The camera and the feature states along with their co-variances are managed in an Extended Kalman filter. In our VSLAM implementation we have attempted to track a large number of features. From the sparse spatial distribution of features we get using Extended Kalman filter we attempt to generate a 3D mesh grid model with the help of an unordered triangle fitting algorithm. We explored the implementation in C++ using Eigen, OpenCV and Point Cloud Library. A multi-threaded software design of the VSLAM algorithm was implemented. The algorithm was evaluated with image sets from trees susceptible to Asian Long Horn Beetle. "
|
117 |
Inertial System Modeling and Kalman Filter Design from Sensor Specifications with Applications in Indoor LocalizationLowe, Matthew 05 May 2011 (has links)
This thesis presents a 6 degree of freedom (DOF) position and orientation tracking solution suitable for pedestrian motion tracking based on 6DOF low cost MEMS inertial measurement units. This thesis was conducted as an extension of the ongoing efforts of the Precision Personnel Location (PPL) project at WPI. Prior to this work most of the PPL research focus has been on Radio Frequency (RF) location estimation. The newly developed inertial based system supports data fusion with the aforementioned RF system in a system currently under development. This work introduces a methodology for the implementation of a position estimation system based upon a Kalman filter structure, constructed from industry standard inertial sensor specifications and analytic noise models. This methodology is important because it allows for both rapid filter construction derived solely from specified values and flexible system definitions. In the course of the project, three different sensors were accommodated using the automatic design tools that were constructed. This thesis will present the mathematical basis of the new inertial tracking system followed by the stages of filter design and implementation, and finally the results of several trials with actual inertial data captures, using both public reference data and inertial captures from a foot mounted sensor that was developed as part of this work.
|
118 |
Combinação de visão monocular e sonares esparsos para a localização de robôs móveis. / Combination of monocular vision and sparse sonares for mobile robots localization.Roberto José Giordano Barra 16 March 2007 (has links)
Um componente fundamental no sistema de um robô móvel consiste na habilidade de localizar-se acuradamente, o que envolve estimar sua postura em relação a uma representação global do espaço. A especificação geral de uma abordagem de localização baseada em dados sensoriais possui uma estimativa inicial da postura do robô e usa os dados coletados pelos sensores, em conjunto com um mapa do ambiente, para produzir uma estimativa mais precisa da postura, que oferece um valor de maior confiança em relação à postura real do robô. Uma dificuldade é que os dados sensoriais são corrompidos por erros de medidas derivados de diversas fontes, como ruídos, quantização, dispositivos de digitalização, deslizamentos do robô, entre outras. Sensores distintos medem diferentes propriedades físicas, corrompidas por diversos erros de medida. O uso de dados oriundos de vários sensores fornece informação redundante e complementar, que pode ser processada para derivar uma estimativa combinada com o objetivo de aumentar a confiança na estimativa final da postura. Nesta dissertação é proposto ELViS, um sistema que estima a localização de um robô móvel equipado com odômetros, uma câmera de vídeo e um semi-anel frontal de 8 sonares, o qual opera, com sucesso, em um ambiente interno, estruturado e estático. Assume-se que o robô navega sobre uma superfície plana e que diversos segmentos de retas possam ser identificados nas imagens do ambiente. Para aumentar a seletividade dos marcos visuais e diminuir a complexidade computacional no processamento e correspondência dos dados com os modelos, elementos do ambiente são representados por modelos minimalistas, possibilitando o uso do ELViS em um grande número de aplicações onde o custo ou tempo de execução sejam fatores limitantes. ELViS foi implementado e testado utilizando dois estimadores baseados em Filtro de Kalman. Os resultados, obtidos com robôs reais e em simulações, indicam direções bastante promissoras. / A key component of a mobile robot system is the ability to localize itself accurately, which involves estimating its pose with respect to some global representation of space. The general specification of a sensor-based localization approach starts with an initial estimate of the robot\'s pose and uses sensor data in conjunction with a map to produce a refined pose estimate that has an increased confidence about the true pose of the robot. One of the main difficulties is that sensor data is corrupted by measurement errors. These errors can arise from noise, quantization, digitalization artifacts, wheel slippage, and other such sources. Different sensors measure different physical properties, which are corrupted by different sources of measurement errors. The use of data from multiple sensors provides redundant and complementary information that can be processed to obtain a combined estimate aiming at an increase in the confidence of the final pose estimate. In this work we propose ELViS, a system that estimates the localization of a mobile robot equipped with odometers, a video camera and a frontal semi-ring of 8 sonar sensors, and that operates successfully in stationary and structured indoor environments. It is assumed that the robot navigates on flat surfaces and that straight lines can be identified in the environment image acquired by the camera. To increase selectivity of the landmarks and reduce computational complexity in data processing and matching to the map, environment features are represented using minimalist models in the map. This allows the use of ELViS in a large number of applications where tight budget or execution time constraints exist. ELViS has been implemented and tested using two estimators based on the Kalman Filter. The results, obtained with the real robots and in series of simulation runs, indicate promising directions.
|
119 |
Combinação de visão monocular e sonares esparsos para a localização de robôs móveis. / Combination of monocular vision and sparse sonares for mobile robots localization.Barra, Roberto José Giordano 16 March 2007 (has links)
Um componente fundamental no sistema de um robô móvel consiste na habilidade de localizar-se acuradamente, o que envolve estimar sua postura em relação a uma representação global do espaço. A especificação geral de uma abordagem de localização baseada em dados sensoriais possui uma estimativa inicial da postura do robô e usa os dados coletados pelos sensores, em conjunto com um mapa do ambiente, para produzir uma estimativa mais precisa da postura, que oferece um valor de maior confiança em relação à postura real do robô. Uma dificuldade é que os dados sensoriais são corrompidos por erros de medidas derivados de diversas fontes, como ruídos, quantização, dispositivos de digitalização, deslizamentos do robô, entre outras. Sensores distintos medem diferentes propriedades físicas, corrompidas por diversos erros de medida. O uso de dados oriundos de vários sensores fornece informação redundante e complementar, que pode ser processada para derivar uma estimativa combinada com o objetivo de aumentar a confiança na estimativa final da postura. Nesta dissertação é proposto ELViS, um sistema que estima a localização de um robô móvel equipado com odômetros, uma câmera de vídeo e um semi-anel frontal de 8 sonares, o qual opera, com sucesso, em um ambiente interno, estruturado e estático. Assume-se que o robô navega sobre uma superfície plana e que diversos segmentos de retas possam ser identificados nas imagens do ambiente. Para aumentar a seletividade dos marcos visuais e diminuir a complexidade computacional no processamento e correspondência dos dados com os modelos, elementos do ambiente são representados por modelos minimalistas, possibilitando o uso do ELViS em um grande número de aplicações onde o custo ou tempo de execução sejam fatores limitantes. ELViS foi implementado e testado utilizando dois estimadores baseados em Filtro de Kalman. Os resultados, obtidos com robôs reais e em simulações, indicam direções bastante promissoras. / A key component of a mobile robot system is the ability to localize itself accurately, which involves estimating its pose with respect to some global representation of space. The general specification of a sensor-based localization approach starts with an initial estimate of the robot\'s pose and uses sensor data in conjunction with a map to produce a refined pose estimate that has an increased confidence about the true pose of the robot. One of the main difficulties is that sensor data is corrupted by measurement errors. These errors can arise from noise, quantization, digitalization artifacts, wheel slippage, and other such sources. Different sensors measure different physical properties, which are corrupted by different sources of measurement errors. The use of data from multiple sensors provides redundant and complementary information that can be processed to obtain a combined estimate aiming at an increase in the confidence of the final pose estimate. In this work we propose ELViS, a system that estimates the localization of a mobile robot equipped with odometers, a video camera and a frontal semi-ring of 8 sonar sensors, and that operates successfully in stationary and structured indoor environments. It is assumed that the robot navigates on flat surfaces and that straight lines can be identified in the environment image acquired by the camera. To increase selectivity of the landmarks and reduce computational complexity in data processing and matching to the map, environment features are represented using minimalist models in the map. This allows the use of ELViS in a large number of applications where tight budget or execution time constraints exist. ELViS has been implemented and tested using two estimators based on the Kalman Filter. The results, obtained with the real robots and in series of simulation runs, indicate promising directions.
|
120 |
Sintonia automática do filtro de kalman unscented. / Automatic tuning of the unscented Kalman filter.Scardua, Leonardo Azevedo 26 November 2015 (has links)
O filtro de Kalman estendido tem sido a mais popular ferramenta de filtragem não linear das últimas quatro décadas. É de fácil implementação e apresenta baixo custo computacional. Nos casos nos quais as não linearidades do sistema dinâmico são significativas, porém, o filtro de Kalman estendido pode apresentar resultados insatisfatórios. Nessas situações, o filtro de Kalman unscented substitui com vantagens o filtro de Kalman estendido, pois pode apresentar melhores estimativas de estado, embora ambos os filtros exibam complexidade computacional de mesma ordem. A qualidade das estimativas de estado do filtro unscented está intimamente ligada à sintonia dos parâmetros que controlam a transformada unscented. A versão escalada dessa transformada exibe três parâmetros escalares que determinam o posicionamento dos pontos sigma e, consequentemente, afetam diretamente a qualidade das estimativas produzidas pelo filtro. Apesar da importância do filtro de Kalman unscented, a sintonia ótima desses parâmetros é um problema para o qual ainda não há solução definitiva. Não há nem mesmo recomendações heurísticas que garantam o bom funcionamento do filtro unscented na maior parte dos problemas tratáveis por meio de filtros Gaussianos. Essa carência e a importância desse filtro para a área de filtragem não linear fazem da busca por mecanismos de sintonia automática do filtro unscented área de pesquisa ativa. Assim, este trabalho propõe técnicas para sintonia automática dos parâmetros da transformada unscented escalada. Além da sintonia desses parâmetros, também é abordado o problema de sintonizar as matrizes de covariância dos ruídos de processo e de medida demandadas pelo modelo do sistema dinâmico usado pelo filtro unscented. As técnicas propostas cobrem então a sintonia automática de todos os parâmetros do filtro. / The extended Kalman filter has been the most popular nonlinear filter of the last four decades. It is easy to implement and exhibits low computational cost. When nonlinearities are significant, though, the extended Kalman filter can display poor state estimation performance. In such situations, the unscented Kalman filter can yield better state estimates, while displaying the same order of computational complexity as the extended Kalman filter. The quality of the state estimates produced by the unscented Kalman filter is directly influenced by the tuning of the scalar parameters that govern the unscented transform. The scaled version of the unscented transform features three scalar parameters that determine the positioning of the sigma points, thus directly affecting the filter state estimation performance. Despite the importance of the unscented Kalman filter, the optimal tuning of the scaled unscented transform parameters is still an open problem. This work hence discusses algorithms for the automatic tuning of the unscented transform parameters. The discussion includes the tuning of the needed noise covariance matrices, thus covering the automatic tuning of all parameters of the unscented Kalman filter.
|
Page generated in 0.0508 seconds