281 |
DYNAMIC FREEWAY TRAVEL TIME PREDICTION USING SINGLE LOOP DETECTOR AND INCIDENT DATAXia, Jingxin 01 January 2006 (has links)
The accurate estimation of travel time is valuable for a variety of transportation applications such as freeway performance evaluation and real-time traveler information. Given the extensive availability of traffic data collected by intelligent transportation systems, a variety of travel time estimation methods have been developed. Despite limited success under light traffic conditions, traditional corridor travel time prediction methods have suffered various drawbacks. First, most of these methods are developed based on data generated by dual-loop detectors that contain average spot speeds. However, single-loop detectors (and other devices that emulate its operation) are the most commonly used devices in traffic monitoring systems. There has not been a reliable methodology for travel time prediction based on data generated by such devices due to the lack of speed measurements. Moreover, the majority of existing studies focus on travel time estimation. Secondly, the effect of traffic progression along the freeway has not been considered in the travel time prediction process. Moreover, the impact of incidents on travel time estimates has not been effectively accounted for in existing studies.The objective of this dissertation is to develop a methodology for dynamic travel time prediction based on continuous data generated by single-loop detectors (and similar devices) and incident reports generated by the traffic monitoring system. This method involves multiple-step-ahead prediction for flow rate and occupancy in real time. A seasonal autoregressive integrated moving average (SARIMA) model is developed with an embedded adaptive predictor. This predictor adjusts the prediction error based on traffic data that becomes available every five minutes at each station. The impact of incidents is evaluated based on estimates of incident duration and the queue incurred.Tests and comparative analyses show that this method is able to capture the real-time characteristics of the traffic and provide more accurate travel time estimates particularly when incidents occur. The sensitivities of the models to the variations of the flow and occupancy data are analyzed and future research has been identified.The potential of this methodology in dealing with less than perfect data sources has been demonstrated. This provides good opportunity for the wide application of the proposed method since single-loop type detectors are most extensively installed in various intelligent transportation system deployments.
|
282 |
Assimilation of snow covered area into a hydrologic modelHreinsson, Einar Örn January 2008 (has links)
Accurate knowledge of water content in seasonal snow can be helpful for water resource management. In this study, a distributed temperature index snow model based on temperature and precipitation as forcing data, is used to estimate snow storage in the Jollie catchment approximately 20km east of the main divide of the central Southern Alps, New Zealand. The main objective is to apply a frequently used assimilation method, the ensemble Kalman square root filter, to assimilate remotely sensed snow covered area into the model and evaluate the impacts of this approach on simulations of snow water equivalent.
A 250m resolution remotely sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS), specifically tuned to the study location was used. Temperature and precipitation were given on a 0.055 latitude/longitude grid. Precipitation was perturbed as input into the model, generating 100 ensemble members, which represented model error. Only observations of snow covered area that had less that 25% cloud cover classification were used in the assimilation precess. The error in the snow covered area observations was assumed to be 0.1 and grow linearly with cloud cover fraction up to 1 for a totally cloud covered pixel. As the model was not calibrated, two withholding experiments were conducted, in which observations withheld from the assimilation process were compared to the results. Two model states were updated in the assimilation, the total snow accumulation state variable and the total snow melt state variable. The results of this study indicate that the model underestimates snow storage at the end of winter and/or does not detect snow fall events during the ablation period. The assimilation method only affected simulated snow covered area and snow storage during the ablation period. That corresponded to higher correlation between modelled snow cover area and the updated state variables. Withholding experiments show good agreement between observations and simulated snow covered area. This study successfully applied the ensemble Kalman square root filter and showed its applicability for New Zealand conditions.
|
283 |
Navigation in Wheeled Mobile Robots Using Kalman Filter Augmented with Parallel Cascade Identification to Model Azimuth ErrorRahman, ATIF 13 June 2013 (has links)
Unmanned ground mobile robots are land-based robots which do not have a human passenger on board. They can be either autonomous, or controlled via telecommunication. For navigational purposes, GPS is often used. However, the GPS signal can be distorted in obstructive environments such as tunnels, urban canyons, and dense forests. IMUs can be used to provide an internal navigational solution, free from external input. However, low cost IMUs are prone to various intrinsic sources of error, which leads to large errors in the long run.
Using the short term accuracy of the IMU, and the long term accuracy of the GPS, these two technologies are often integrated to combine the aforementioned aspects of the two systems. For integration of the two, various methods are implemented. Such integration methods include Particle Filters, and Kalman Filters. Kalman Filters are commonly used due to their simplicity in calculations. However, the Kalman Filter linearizes the nonlinear error estimates which are inherent with low cost IMUs. The Kalman Filter also does not account for IMU measurement drift, which is present when the measurement unit is used for a long period of time.
In this thesis, a Parallel Cascade Identification (PCI) algorithm is augmented with the Kalman Filter (KF) to model the nonlinear errors which are intrinsic to the low cost IMU. The method of integration used was 2D GPS/RISS loosely coupled integration using a Kalman Filter. The PCI algorithm modelled the nonlinear error for the z-axis gyroscope while the GPS signal was available. During a GPS outage, the PCI nonlinear error model was combined with the KF estimated error and the mechanization error, to provide a corrected azimuth. The KFPCI algorithm showed an improvement over the KF algorithm in RMS position error, maximum position error, RMS azimuth error, and maximum azimuth error by an average of 30.76%, 34.71%, 66.76%, and 53.58% in each of the respective areas. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2013-06-11 18:13:12.625
|
284 |
Model-based fault detection and control design - applied to a pneumatic Stewart-Gough platformGrewal, Karmjit Singh January 2010 (has links)
The safety and functionality of engineering systems can be affected adversely by faults or wear in system components. Therefore, methods for detecting such faults/wear and ameliorating their effects to avoid system failure are important. Designing schemes for the detection and diagnosis of faults is becoming increasingly important in engineering due to the complexity of modern industrial systems and growing demands for quality, cost efficiency, reliability, and the safety issue. In safety/mission critical applications, fault detection can be combined with accommodation/reconfiguration (after a fault) to achieve fault tolerance allowing the system to complete or abort its function in a way that is sub-optimal but does achieve the design objective. This thesis discusses research carried-out on the development and validation of a model-based fault detection and isolation (FDI) system for a pneumatically actuated Stewart platform. The Stewart-Gough platform provides six degrees of freedom consisting of three translational and three rotational degrees of freedom (x, y, z, pitch, roll, & yaw). As these platforms can be fast acting (rapid motion) and can handle reasonable loads, they can become dangerous, especially when fault(s) in the platform mechanism, drivetrain or control system occur. Therefore, as a safety critical application it is imperative that fault tolerant schemes are applied in order to provide a safe working environment. The design concept of the FDI scheme for the full Stewart-Gough platform is first designed using a single cylinder set-up. This modular concept is adopted so that a robust fault tolerant control scheme can be designed basically off-line (i.e. not attached to the Stewart Gough platform). This approach is adopted as requirements are easier to understand using a single cylinder set-up. The modular design approach subdivides the whole system into smaller sections (modules) that can be independently created and then used in the complete Stewart-Gough platform. The main contributions of the work are that a pneumatically actuated Stewart-Gough platform has been designed, built, and commissioned. A mathematical model has been developed and has been validated against experimental results. Two control approaches have been designed and compared. A fundamental comparative study of parity equations and Kalman filter observer banks for fault detection in pneumatic actuators has been conducted. The parity equations and Kalman filter approaches have been extended to provide a combined fault detection scheme. The FDI and control schemes have been combined in a modular Fault Tolerant Control (FTC) scheme for a pneumatic cylinder. The resulting FTC scheme has been validated by experimentation and demonstrated on the single cylinder test rig. The FTC scheme has been extended to all 6 cylinders (and including fault management at top level) of Stewart-Gough platform. The FTC scheme has been validated by experimentation and demonstrated on the Stewart-Gough platform test rig.
|
285 |
Distributed Linear Filtering and Prediction of Time-varying Random FieldsDas, Subhro 01 June 2016 (has links)
We study distributed estimation of dynamic random fields observed by a sparsely connected network of agents/sensors. The sensors are inexpensive, low power, and they communicate locally and perform computation tasks. In the era of large-scale systems and big data, distributed estimators, yielding robust and reliable field estimates, are capable of significantly reducing the large computation and communication load required by centralized estimators, by running local parallel inference algorithms. The distributed estimators have applications in estimation, for example, of temperature, rainfall or wind-speed over a large geographical area; dynamic states of a power grid; location of a group of cooperating vehicles; or beliefs in social networks. The thesis develops distributed estimators where each sensor reconstructs the estimate of the entire field. Since the local estimators have direct access to only local innovations, local observations or a local state, the agents need a consensus-type step to construct locally an estimate of their global versions. This is akin to what we refer to as distributed dynamic averaging. Dynamic averaged quantities, which we call pseudo-quantities, are then used by the distributed local estimators to yield at each sensor an estimate of the whole field. Using terminology from the literature, we refer to the distributed estimators presented in this thesis as Consensus+Innovations-type Kalman filters. We propose three distinct types of distributed estimators according to the quantity that is dynamically averaged: (1) Pseudo-Innovations Kalman Filter (PIKF), (2) Distributed Information Kalman Filter (DIKF), and (3) Consensus+Innovations Kalman Filter (CIKF). The thesis proves that under minimal assumptions the distributed estimators, PIKF, DIKF and CIKF converge to unbiased and bounded mean-squared error (MSE) distributed estimates of the field. These distributed algorithms exhibit a Network Tracking Capacity (NTC) behavior – the MSE is bounded if the degree of instability of the field dynamics is below a threshold. We derive the threshold for each of the filters. The thesis establishes trade-offs between these three distributed estimators. The NTC of the PIKF depends on the network connectivity only, while the NTC of the DIKF and of the CIKF depend also on the observation models. On the other hand, when all the three estimators converge, numerical simulations show that the DIKF improves 2dB over the PIKF. Since the DIKF uses scalar gains, it is simpler to implement than the CIKF. Of the three estimators, the CIKF provides the best MSE performance using optimized gain matrices, yielding an improvement of 3dB over the DIKF. Keywords: Kalman filter, distributed state estimation, multi-agent networks, sensor networks, distributed algorithms, consensus, innovation, asymptotic convergence, mean-squared error, dynamic averaging, Riccati equation, Lyapunov iterations, distributed signal processing, random dynamical systems.
|
286 |
Attitude and Trajectory Estimation for Small Suborbital PayloadsYuan, Yunxia January 2017 (has links)
Sounding rockets and small suborbital payloads provide a means for research in situ of the atmosphere and ionosphere. The trajectory and the attitude of the payload are critical for the evaluation of the scientific measurements and experiments. The trajectory refers the location of the measurement, while the attitude determines the orientation of the sensors. This thesis covers methods of trajectory and attitude reconstruction implemented in several experiments with small suborbital payloads carried out by the Department of Space and Plasma Physics in 2012--2016. The problem of trajectory reconstruction based on raw GPS data was studied for small suborbital payloads. It was formulated as a global least squares optimization problem. The method was applied to flight data of two suborbital payloads of the RAIN REXUS experiment. Positions and velocities were obtained with high accuracy. Based on the trajectory reconstruction technique, atmospheric densities, temperatures, and horizontal wind speeds below 80 km were obtained using rigid free falling spheres of the LEEWAVES experiment. Comparison with independent data indicates that the results are reliable for densities below 70 km, temperatures below 50 km, and wind speeds below 45 km. Attitude reconstruction of suborbital payloads from yaw-pitch-roll Euler angles was studied. The Euler angles were established by two methods: a global optimization method and an Unscented Kalman Filter (UKF) technique. The comparison of the results shows that the global optimization method provides a more accurate fit to the observations than the UKF. Improving the results of the falling sphere experiments requires understanding of the attitude motion of the sphere. An analytical consideration was developed for a free falling and axisymmetric sphere under aerodynamic torques. The motion can generally be defined as a superposition of precession and nutation. These motion phenomena were modeled numerically and compared to flight data. / <p>QC 20170510</p>
|
287 |
Low Light Video Enhancement along with Objective and Subjective Quality AssessmentDalasari, Venkata Gopi Krishna, Jayanty, Sri Krishna January 2016 (has links)
Enhancing low light videos has been quite a challenge over the years. A video taken in low light always has the issues of low dynamic range and high noise. This master thesis presents contribution within the field of low light video enhancement. Three models are proposed with different tone mapping algorithms for extremely low light low quality video enhancement. For temporal noise removal, a motion compensated kalman structure is presented. Dynamic range of the low light video is stretched using three different methods. In Model 1, dynamic range is increased by adjustment of RGB histograms using gamma correction with a modified version of adaptive clipping thresholds. In Model 2, a shape preserving dynamic range stretch of the RGB histogram is applied using SMQT. In Model 3, contrast enhancement is done using CLAHE. In the final stage, the residual noise is removed using an efficient NLM. The performance of the models are compared on various Objective VQA metrics like NIQE, GCF and SSIM. To evaluate the actual performance of the models subjective tests are conducted, due to the large number of applications that target humans as the end user of the video.The performance of the three models are compared for a total of ten real time input videos taken in extremely low light environment. A total of 25 human observers subjectively evaluated the performance of the three models based on the parameters: contrast, visibility, visually pleasing, amount of noise and overall quality. A detailed statistical evaluation of the relative performance of the three models is also provided.
|
288 |
Leveraging the information content of process-based models using Differential Evolution and the Extended Kalman FilterHoward, Lucas 01 January 2016 (has links)
Process-based models are used in a diverse array of fields, including environmental engineering to provide supporting information to engineers, policymakers and stakeholdes. Recent advances in remote sensing and data storage technology have provided opportunities for improving the application of process-based models and visualizing data, but also present new challenges. The availability of larger quantities of data may allow models to be constructed and calibrated in a more thorough and precise manner, but depending on the type and volume of data, it is not always clear how to incorporate the information content of these data into a coherent modeling framework. In this context, using process-based models in new ways to provide decision support or to produce more complete and flexible predictive tools is a key task in the modern data-rich engineering world. In standard usage, models can be used for simulating specific scenarios; they can also be used as part of an automated design optimization algorithm to provide decision support or in a data-assimilation framework to incorporate the information content of ongoing measurements. In that vein, this thesis presents and demonstrates extensions and refinements to leverage the best of what process-based models offer using Differential Evolution (DE) the Extended Kalman Filter (EKF).
Coupling multi-objective optimization to a process-based model may provide valuable information provided an objective function is constructed appropriately to reflect the multi-objective problem and constraints. That, in turn, requires weighting two or more competing objectives in the early stages of an analysis. The methodology proposed here relaxes that requirement by framing the model optimization as a sensitivity analysis. For demonstration, this is implemented using a surface water model (HEC-RAS) and the impact of floodplain access up and downstream of a fixed bridge on bridge scour is analyzed. DE, an evoutionary global optimization algorithm, is wrapped around a calibrated HEC-RAS model. Multiple objective functions, representing different relative weighting of two objectives, are used; the resulting rank-orders of river reach locations by floodplain access sensitivity are consistent across these multiple functions.
To extend the applicability of data assimilation methods, this thesis proposes relaxing the requirement that the model be calibrated (provided the parameters are still within physically defensible ranges) before performing assimilation. The model is then dynamically calibrated to new state estimates, which depend on the behavior of the model. Feasibility is demonstrated using the EKF and a synthetic dataset of pendulum motion. The dynamic calibration method reduces the variance of prediction errors compared to measurement errors using an initially uncalibrated model and produces estimates of calibration parameters that converge to the true values. The potential application of the dynamic calibration method to river sediment transport modeling is proposed in detail, including a method for automated calibration using sediment grain size distribution as a calibration parameter.
|
289 |
Intelligent power management for unmanned vehiclesGraham, James January 2015 (has links)
Unmanned Air Vehicles (UAVs) are becoming more widely used in both military and civilian applications. Some of the largest UAVs have power systems equivalent to that of a military strike jet making power management an important aspect of their design. As they have developed, the amount of power needed for loads has increased. This has placed increase strain on the on-board generators and a need for higher reliability. In normal operation these generators are sized to be able to power all on-board systems with out overheating. Under abnormal operating conditions these generators may start to overheat, causing the loss of the generator's power output. The research presented here aims to answer two main questions: 1) Is it possible to predict when an overheat fault will occur based on the expected power usage defined by mission profiles? 2) Can an overheat fault be prevented while still allowing power to be distributed to necessary loads to allow mission completion? This is achieved by a load management algorithm, which adjusts the load profile for a mission, by either displacing the load to spare generators, or resting the generator to cool it down. The result is that for non-catastrophic faults the faulty generator does not need to be fully shut down and missions can continue rather than having to be aborted. This thesis presents the development of the load management system including the algorithm, prediction method and the models used for prediction. Ultimately, the algorithms developed are tested on a generator test rig. The main contribution of this work is the design of a prognostic load management algorithm. Secondary contributions are the use of a lumped parameter thermal model within a condition monitoring application, and the creation of a system identification model to describe the thermal dynamics of a generator.
|
290 |
Latency and Distortion compensation in Augmented Environments using Electromagnetic trackersHimberg, Henry 17 December 2010 (has links)
Augmented reality (AR) systems are often used to superimpose virtual objects or information on a scene to improve situational awareness. Delays in the display system or inaccurate registration of objects destroy the sense of immersion a user experiences when using AR systems. AC electromagnetic trackers are ideally for these applications when combined with head orientation prediction to compensate for display system delays. Unfortunately, these trackers do not perform well in environments that contain conductive or ferrous materials due to magnetic field distortion without expensive calibration techniques. In our work we focus on both the prediction and distortion compensation aspects of this application, developing a “small footprint” predictive filter for display lag compensation and a simplified calibration system for AC magnetic trackers. In the first phase of our study we presented a novel method of tracking angular head velocity from quaternion orientation using an Extended Kalman Filter in both single model (DQEKF) and multiple model (MMDQ) implementations. In the second phase of our work we have developed a new method of mapping the magnetic field generated by the tracker without high precision measurement equipment. This method uses simple fixtures with multiple sensors in a rigid geometry to collect magnetic field data in the tracking volume. We have developed a new algorithm to process the collected data and generate a map of the magnetic field distortion that can be used to compensation distorted measurement data.
|
Page generated in 0.0313 seconds