• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical Module studies for underwater neutrino telescopes / Etudes de modules optiques pour les télescopes à neutrinos sous-marins

Avgitas, Theodoros 15 December 2017 (has links)
Un banc test, composé d’ une cuve à eau et d’ un hodoscope, a été optimisé et utilisé pour la caractérisation des Modules Optiques (OMs) des expériences ANTARES et KM3NeT. La comparaison entre le flux attendu de muons atmosphériques et le flux mesuré a permis l’ estimation de l’ efficacité de l’ hodoscope.Dans un premier temps, des mesures effectuées avec un OM ANTARES ont permis de valider le système d’ acquisition et de caractériser l’ étalonnage temporel du banc test. Un Module Optique Digital (DOM) a ensuite pu être installé dans la cuve pour être testé. De nombreux points cruciaux pour les télescopes sous-marins à neutrino ont été mentionnés et une description détaillée de l’ étalonnage en charge et du réglage du détecteur a été présentée. La dégradation, observée expérimentalement, de l’ efficacité de détection des OMs ANTARES a été confrontée aux résultats obtenus en simulant la formation d’ une couche de sédimentation. L’ impact de différents profils de sédimentation a été étudié et les résultats de l’ analyse Monte Carlo ont été détaillés. Ce travail a permis de rejeter certains profils de sédimentation en désaccord avec les données. / A test bench, comprised of a water tank and a hodoscope, was optimized and operated for the characterization of ANTARES and KM3NeT OpticalModules (OMs). A calculation of the expected atmospheric muon flux and the comparisonto the detected flux is made for the evaluation of the hodoscope efficiency.Measurements were initially made with an ANTARES OM for the evaluation of thetest bench potential and the consequent time correlation analysis. The results wereconsidered satisfying for proceeding to the characterization of a KM3NeT DigitalOM (DOM). This was the first time a DOM was investigated with known muontracks and the analysis lead to original and insightful results. Many key aspectsfor an undersea neutrino telescope are outlined and a detailed description of chargecalibration and the tuning sequence for the ANTARES detector are presented. Theobservation that the OM efficiencies for ANTARES are deteriorating in the courseof time has been compared to simulations of a sedimentation layer on the OMÕsglass sphere. Different profiles for this sedimentation impact are considered and thecombined analysis of monte carlo results with detector data is described. This workpermitted to reject extreme cases of biofouling profiles that are inconsistent withthe data
2

Design and Development of an acoustic positioning system for a cubic kilometre underwater neutrino telescope

Larosa ., Giuseppina 26 July 2012 (has links)
En los últimos años los telescopios submarinos de neutrinos han cobrado una mayor importancia ya que consisten en un nuevo y único instrumento para observar el Universo. Los neutrinos son partículas sin carga e interactúan muy débilmente con la materia que les rodean, pueden escaparse fácilmente de la fuente que los ha producidos y llegar a La Tierra sin ser desviada por los campo magnético y sin interactuar con otras partículas. Esto implica que los neutrinos pueden traer informaciones astrofísicas que otros mensajeros no pueden aportar y abrir una potencial ventana hacia el Universo. Por otro lado, su baja interacción con la materia impone la necesidad de construir un detector de grandes dimensiones del orden de 1 km3 utilizando volumen de agua o hielo y con muchos sensores ópticos para detectar esta interacción de neutrino de alta energía. Un método para detectar neutrinos es a través de la luz Cherenkov emitida por el muon generado después de una interacción de neutrino. Esta partícula, al atravesar el detector con una velocidad superior a la luz en el medio, genera una débil luz azulada llamada radiación de Cherenkov que es detectada por una red de sensores ópticos (fotomultiplicadores). El tiempo de llegada de la luz a los fotomultiplicadores puede ser utilizado para reconstruir la traza del muon y consecuentemente del neutrino que lo ha producido. La precisión en la reconstrucción de la traza del muon depende de la precisión en la medida del tiempo de llegada de la luz y en la precisión en de la posición de los sensores ópticos en el detector. Por esta razón, en telescopios submarinos es necesario un sistema de posicionamiento acústico (APS) capaz de monitorizar el movimiento de los sensores ópticos con una precisión de ~10 cm. Los estudios realizados están enmarcados dentro de las actividades de calibración de posicionamiento acústico en dos colaboraciones europeas para el diseño, construcción y operación de telescopios submarinos de neutrinos en el Mediter / Larosa ., G. (2012). Design and Development of an acoustic positioning system for a cubic kilometre underwater neutrino telescope [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16877 / Palancia
3

Acoustic System Development for Neutrino Underwater Detectors

Saldaña Coscollar, María 31 July 2017 (has links)
The main objective of this research is the design and development of two different underwater acoustic emitters aimed to the deep-sea KM3NeT neutrino telescope, more specifically for the Acoustic Positioning System (APS) and for the calibration of the acoustic neutrino detection technique. The KM3NeT project is a new optical-based deep-sea neutrino telescope, currently under construction. The main objectives of the KM3NeT telescope are the discovery and observation of high-energy neutrino sources in the Universe and the determination of the mass hierarchy of neutrinos. The KM3NeT detectors consist of three-dimensional arrays of light sensor modules distributed over large volumes of the transparent water in the deep Mediterranean Sea. The sensor modules register the time of arrival of the light and the brightness of the light to reconstruct the direction and energy of the neutrino. In order to achieve an accurate deployment of the mechanical structures and a precise reconstruction of neutrino induced events, the telescope includes an APS as mandatory sub-system that provides an accurate position of the mechanical structures in real time. Additionally, the APS could also be an excellent tool to study the feasibility of an acoustic neutrino detector and a possible correlation between acoustic and optical signals. The new detector KM3NeT is an excellent opportunity to continue with the study of the acoustic neutrino detection. The acoustic detection would allow the combination of the two neutrino detection techniques for a hybrid underwater neutrino telescope, especially considering that the optical based telescope needs acoustic sensors to monitor the position of the sensors. An Acoustic Beacon (AB) as part of the APS of KM3NeT has been developed in this thesis. Previously, the first emitter prototype was developed and it was installed in previous neutrino telescopes, such as ANTARES and NEMO, in order to be tested in situ. The analyses of the in situ test with the prototypes were performed as part of this thesis. The results obtained from the tests showed that the requirements for the positioning system are accomplished, just needing few improvements for the final version. The final version of the AB is composed by a piezo-ceramic transducer and an electronic board integrated in a single piece in a cylindrical hard-anodized aluminium vessel. The design and the work done for a precise laboratory test was performed achieving optimal results in all aspects As second main work performed in this thesis, a parametric transducer array able to mimic the acoustic signal generated by Ultra-High Energy (UHE) neutrino interaction in water was designed and developed. The first part was designing a single transducer able to emit parametrically the acoustic neutrino signal. Afterwards, the design of the complete array system composed of few units was performed in order to achieve a more energetic and directional bipolar pulse. / El objetivo principal de esta investigación es el diseño y desarrollo de dos tipos de emisores acústicos diferentes para ser utilizados en el telescopio submarino de neutrinos KM3NeT, en concreto, uno como emisor en el sistema de posicionamiento acústico (APS) y otro para la calibración de la detección acústica de neutrinos. El proyecto KM3NeT es un telescopio óptico de neutrinos, que actualmente está en fase de construcción, y está ubicado en las profundidades del mar. Los objetivos principales del telescopio son el descubrimiento y la observación de las fuentes que originan los neutrinos de alta energía en el universo y la determinación de la jerarquía de masas de los neutrinos. Los detectores de KM3NeT consisten en conjuntos tridimensionales de módulos de sensores de luz distribuidos en grandes volúmenes de agua en las profundidades del mar Mediterráneo. Los módulos de sensores ópticos registran el tiempo de llegada de la luz y el brillo de la luz para reconstruir la dirección y la energía del neutrino. Con objeto de lograr una implementación correcta de las estructuras mecánicas y una reconstrucción precisa de los eventos del neutrino, el telescopio incluye el APS como subsistema necesario para proporcionar la posición exacta de las estructuras mecánicas en tiempo real. Además, el APS puede ser una herramienta excelente para estudiar la viabilidad de un detector de neutrinos acústico y de una posible correlación entre la señal acústica y óptica. El nuevo detector KM3NeT es una oportunidad para continuar con el estudio de detección acústica de neutrinos. La detección acústica permitiría la combinación de las dos técnicas de detección de neutrinos para un telescopio submarino de neutrinos híbrido, y más aún, teniendo en cuenta que el telescopio óptico necesita de sensores acústicos para monitorizar la posición de los sensores. En esta tesis, por un lado, se ha desarrollado un emisor acústico (AB) como parte del APS de KM3NeT. Previamente, se desarrolló el primer prototipo del emisor acústico, el cual se instaló en anteriores telescopios de neutrinos, concretamente en ANTARES y NEMO, con el fin de comprobar su funcionamiento in situ. Como parte de la tesis, se realizaron los análisis de las pruebas in situ y los resultados obtenidos mostraron que cumplía los requisitos del sistema de posicionamiento, únicamente se necesitaron algunas mejoras para la versión final. La versión final del AB está compuesta por un transductor piezo-cerámico y una placa electrónica integrado en una sola pieza en un recipiente cilíndrico de aluminio anodizado. El diseño y el trabajo realizado para una calibración precisa de laboratorio se llevó a cabo, logrando resultados óptimos en todos los aspectos requeridos. El segundo trabajo principal desarrollado en esta tesis consistió en el diseño de un array paramétrico de transductores capaz de imitar la señal acústica generada por la interacción del neutrino de ultra-alta energía (UHE) en el agua. La primera parte de su diseño se centró en el desarrollo de un transductor individual capaz de emitir paramétricamente la señal acústica del neutrino. Posteriormente, se realizó el diseño del array completo compuesto por varias unidades del transductor diseñado, con el objeto de lograr un pulso bipolar más enérgico y directivo. / L'objectiu principal d'esta investigació és el disseny i desenvolupament de dos tipus d'emissors acústics diferents per a ser utilitzats en el telescopi submarí de neutrins KM3NET, en concret, ú com emissor en el sistema de posicionament acústic (APS) i altre per a la calibració de la detecció acústica de neutrins. El projecte KM3NET és un telescopi òptic de neutrins, que actualment està en fase de construcció, i està ubicat en les profunditats del mar. Els objectius principals del telescopi són el descobriment i l'observació de les fonts que originen els neutrins d'alta energia en l'univers i la determinació de la jerarquia de masses dels neutrins. Els detectors de KM3NET consisteixen en conjunts tridimensionals de mòduls de sensors de llum distribuïts en gran volums d'aigua en el Mediterrani. Els mòduls de sensors òptics registren el temps d'aplegada de la llum i la intensitat de la llum per a reconstruir la direcció i l'energia del neutrí. Com objectiu d'aconseguir una implementació correcta de les estructures mecàniques i una reconstrucció precisa dels events del neutrí, el telescopi inclou l'APS com subsistema necessari per a proporcionar la posició exacta de les estructures mecàniques en temps real. A mes, l'APS pot ser una ferramenta excel¿lent per a estudiar la viabilitat d'un detector de neutrins acústic i d'una possible correlació entre el senyal acústic i òptic. El nou detector KM3NET és una oportunitat per a continuar en l'estudi de detecció acústica del neutrí. La detecció acústica permetria la combinació de les dos tècniques de detecció de neutrins per a un telescopi submarí de neutrins híbrid, i més encara, tenint en compte que el telescopi òptic necessita de sensors acústics per a monitoritzar la posició dels sensors. En aquesta tesis, per un costat, s'ha dissenyat un emissor acústic (AB) com part de l'APS de KM3NET. Prèviament, se desenvolupà el primer prototip de l'emissor acústic, el qual s'instal¿là en anteriors telescopis de neutrins, concretament en ANTARES i NEMO, amb el fi de comprovar-se el seu funcionament in situ. Com part de la tesis, es realitzaren els anàlisis de les proves in situ i els resultats obtinguts mostraren que complia els requisits del sistema de posicionament, únicament necessitant-se d'algunes millores per a la versió final. La versió final de l'AB està composta per un transductor piezo-ceràmic i una placa electrònica integrats en una sola peça en un recipient cilíndric d'alumini anoditzat. El disseny i el treball realitzat per a una calibració precisa de laboratori es va dur a terme, aconseguint resultats òptims en tots els aspectes requerits. Com segon treball principal desenvolupat en esta tesis, s'ha dissenyat un array paramètric de transductors capaç d'imitar el senyal acústic generat per l'interacció del neutrí d'ultra-alta energia (UHE) en l'aigua. La primera part de disseny es centrà en el desenvolupament d'un transductor individual capaç d'emetre paramètricament el senyal acústic del neutrí. Posteriorment, es va realitzar el disseny de l'array complet compost per varies unitats del transductor dissenyat, amb l'objectiu d'aconseguir un pols bipolar més energètic i directiu. / Saldaña Coscollar, M. (2017). Acoustic System Development for Neutrino Underwater Detectors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/85981 / TESIS
4

Diseño y desarrollo de la electrónica de los emisores acústicos para los sistemas de posicionamiento y calibración de telescopios submarinos de neutrinos

Llorens Alvarez, Carlos David 02 October 2017 (has links)
Neutrino telescopes are a new way of looking at the Universe. For more than a decade these structures are being designed to study the Universe from a new point of view, that is, from the particles generated in the cosmic accelerators of particles. These infrastructures are not only useful to study the Universe, but they can also be used in the field of Particle Physics and even in the study of underwater life. Most of these telescopes are based on the detection of the so-called Cherenkov light using photomultipliers, the difference between them lies in the medium in which they are located (ice or water) and in the infrastructure used. Specifically, European telescopes mount these photomultipliers in an underwater vertical structure anchored at great depth, which is under the influence of sea currents. For this reason they suffer displacements that affect the location of the photomultipliers and it becomes necessary to implement a positioning system for the telescope to be functional. For this, an acoustic system consisting of emitters anchored to the sea floor and receivers located at the different levels of the vertical structure is used. One of the objectives of the present thesis is the development of these acoustic emitters. For this purpose we have developed different laboratory prototypes with different features until obtaining an improved prototype that was installed and tested in ANTARES and NEMO telescopes. This showed that the prototype worked perfectly within the established requirements and then, we proceed to design a final version of the much more powerful and functional emitter, acoustic beacon, to be mounted inside aluminum vessels together with an omnidirectional acoustic transducer, which will be located in anchored positions of the new KM3NeT neutrino telescope. In collaboration with the MSM Company, 18 acoustic beacons were developed for KM3NeT-ARCA being two of them installed in the first marine campaign at the end of 2015, and being able then to verify their correct operation. On the other hand, interaction of ultraenergetic neutrinos with matter also produces a thermoacoustic pulse with bipolar form, axial symmetry and highly directive. The feasibility of the acoustic detection technique and the possibility of implementing it in these telescopes have been under study for years. In order to test and calibrate this technique, it is necessary to have an acoustic emitter system able of generating a signal similar to the neutrino signature. This has been the second objective developed in this thesis. To achieve this objective, a compact and versatile calibrator based on an array of acoustic transducers using parametric generation has been designed. Given the complexity of the pulse to emulate and the novelty of the technique to be used, it has been necessary to carry out different laboratory tests in order to obtain suitable transducers and electronics able of making them to work at the required power and efficiency. The positive results obtained in this line suggest that we will be able to obtain a full functional neutrino acoustic calibrator soon. Finally, I would like to mention that I have participated in the different research and activities described in the thesis, putting especial emphasis in the development of the electronics and the software/firmware of the developed acoustic emitters. / Los telescopios de neutrinos son una nueva forma de observar el Universo. Desde hace más de una década se están diseñando este tipo de estructuras con el propósito de estudiar el Universo desde un nuevo punto de vista, el de las partículas que se generan en los aceleradores de partículas cósmicos. Estas infraestructuras no solo se limitan al estudio del Universo, sino que también pueden ser utilizadas en el campo de la Física de partículas e incluso en el estudio de la vida submarina. La mayoría de estos telescopios se basan en la detección de la llamada luz de Cherenkov mediante fotomultiplicadores, la diferencia entre ellos radica en el medio en que se ubican (hielo o agua) y en la infraestructura utilizada. Concretamente, los telescopios europeos montan dichos fotomultiplicadores en una estructura vertical submarina anclada a gran profundidad, la cual está sometida a la influencia de las corrientes marinas. Por este motivo sufren desplazamientos que afectan a la localización de los fotomultiplicadores y se hace necesaria la implementación de un sistema de posicionamiento para que el telescopio sea funcional. Para ello se utiliza un sistema acústico consistente en unos emisores anclados al suelo marino y unos receptores situados en los diferentes niveles de la estructura vertical. Uno de los objetivos de la presente tesis es el desarrollo de estos emisores acústicos. Con este fin se han desarrollado diferentes prototipos de laboratorio con los que se han ido escalando prestaciones hasta obtener un prototipo que ha sido instalado y testeado en los telescopios ANTARES y NEMO. Así se demostró que el prototipo funcionaba perfectamente dentro de los requisitos establecidos, pasándose a diseñar una versión final del emisor acústico mucho más potente y funcional para ser montada dentro de vasijas de aluminio junto con un traductor omnidireccional en las anclas del nuevo telescopio de neutrinos KM3NeT. Conjuntamente con la empresa MSM se elaboraron 18 equipos para KM3NeT-ARCA, dos de los cuales fueron instalados en la primera campaña marina a finales de 2015 comprobándose su correcto funcionamiento. Por otro lado, la interacción de los neutrinos ultraenergéticos con la materia también produce un pulso termoacústico con forma bipolar, simetría axial y altamente directivo. Desde hace años se está estudiando la viabilidad de la técnica de detección acústica y la posibilidad de implementarla en dichos telescopios. Para poder poner a prueba y calibrar dicha técnica es necesario disponer de un sistema emisor acústico que sea capaz de generar una señal similar a la descrita. Este ha sido el segundo objetivo desarrollado en esta tesis. Para ello se ha diseñado un calibrador compacto y versátil basado en un array de transductores acústicos usando generación paramétrica. Dada la complejidad del pulso a emular y lo novedoso de la técnica a utilizar, se ha requerido la realización de numerosas pruebas de laboratorio con el fin de conseguir unos transductores adecuados y la electrónica capaz de hacerlos funcionar a la potencia y eficiencia requerida. Los positivos resultados obtenidos en esta línea hacen prever que, en breve, podremos obtener un calibrador acústico de neutrinos funcional. Finalmente, cabe reseñar que he participado en las diferentes investigaciones y actividades que se describen en la tesis, siendo mi cometido principal el desarrollo tanto de la electrónica como de los diferentes softwares/firmwares implicados en los emisores acústicos desarrollados. / Els telescopis de neutrins són una nova forma d'observar l'Univers. Des de fa més d'una dècada s'estan dissenyant aquest tipus d'estructures amb el propòsit d'estudiar l'Univers des d'un nou punt de vista, el de les partícules que es generen en els acceleradors de partícules còsmics. Estes infraestructures no sols es limiten a l'estudi de l'Univers, sinó que també poden ser utilitzades en el camp de la Física de partícules i fins i tot en l'estudi de la vida submarina. La majoria d'aquests telescopis es basen en la detecció de l'anomenada llum de Cherenkov per mitjà de fotomultiplicadors, la diferència entre ells radica en el mig en què s'ubiquen (gel o aigua) i en la infraestructura utilitzada. Concretament, els telescopis europeus munten dits fotomultiplicadors en una estructura vertical submarina ancorada a gran profunditat, la qual està sotmesa a la influència dels corrents marins. Per este motiu pateixen desplaçaments que afecten a la localització dels fotomultiplicadors i es fa necessària la implementació d'un sistema de posicionament per a què el telescopi siga funcional. Per a això s'utilitza un sistema acústic consistent en uns emissors ancorats al sòl marí i uns receptors situats en els diferents nivells de l'estructura vertical. Un dels objectius de la present tesi és el desenvolupament d'aquests emissors acústics. Amb este fi s'han desenvolupat diferents prototips de laboratori amb els quals s'han anat escalant prestacions fins a obtindre un prototip que ha sigut instal·lat i testeat en els telescopis ANTARES i NEMO. Així es va demostrar que el prototip funcionava perfectament dins dels requisits establerts, passant-se a dissenyar una versió final de l'emissor acústic molt més potent i funcional per a ser muntada dins d'atuells d'alumini junt amb un traductor omnidireccional en les àncores del nou telescopi de neutrins KM3NeT. Conjuntament amb l'empresa MSM es van elaborar 18 equips per a KM3NeT-ARCA, dos dels quals van ser instal·lats en la primera campanya marina a finals de 2015 comprovant-se el seu correcte funcionament. D'altra banda, la interacció dels neutrins ultraenergètics amb la matèria també produeix un pols termoacústic amb forma bipolar, simetria axial i altament directiu. Des de fa anys s'està estudiant la viabilitat de la tècnica de detecció acústica i la possibilitat d'implementar-la en els esmentats telescopis. Per a poder posar a prova i calibrar esta tècnica és necessari disposar d'un sistema emissor acústic que siga capaç de generar un senyal semblant al descrit. Aquest ha sigut el segon objectiu desenvolupat en aquesta tesi. Per a això s'ha dissenyat un calibrador compacte i versàtil basat en un array de transductores acústics utilitzant generació paramètrica. Donada la complexitat del pols a emular i la novetat de la tècnica a utilitzar, s'ha requerit la realització de nombroses proves de laboratori a fi d'aconseguir uns transductors adequats i l'electrònica capaç de fer-los funcionar a la potència i eficiència requerida. Els positius resultats obtinguts en esta línia fan preveure que, en breu, podrem obtindre un calibrador acústic de neutrins funcional. Finalment, cal ressenyar que he participat en les diferents investigacions i activitats que es descriuen en la tesi, sent la meua comesa principal el desenvolupament tant de l'electrònica com dels diferents softwares/firmwares implicats en els emissors acústics desenvolupats. / Llorens Alvarez, CD. (2017). Diseño y desarrollo de la electrónica de los emisores acústicos para los sistemas de posicionamiento y calibración de telescopios submarinos de neutrinos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/88401 / TESIS
5

Dark Matter Searches Towards the Sun with ANTARES and Positioning Studies for KM3NeT

Poirè, Chiara 24 October 2022 (has links)
[ES] Los neutrinos de alta energía son partículas esquivas: no tienen carga, tienen una sección transversal de interacción muy pequeña con la materia ordinaria y su masa es extremadamente pequeña. Los neutrinos son una sonda importante en el estudio del origen de los rayos cósmicos, y también, siguiendo algunos modelos de la física más allá del modelo Stardard, pueden producirse a partir de la propagación de partículas del modelo estándar producidas por la aniquilación de la materia oscura. En el último siglo, se han desarrollado muchos enfoques nuevos en la física de astropartículas, tratando de resolver los enigmas no resueltos del Universo, como el origen de los rayos cósmicos y la existencia de la materia oscura. Entre los diferentes experimentos destacan, sin duda, los telescopios de neutrinos. Los telescopios de neutrinos, consistentes en un gran volumen de un medio transparente monitorizado por sensores ópticos para detectar luz de Cherenkov, pueden detectar neutrinos de alta energía de fuentes galácticas o extragalácticas, y también pueden usarse para el estudio de las propiedades de los neutrinos. ANTARES y su sucesor KM3NeT son dos telescopios de neutrinos ubicados en el mar Mediterráneo. El telescopio ANTARES empezó a estar operativo en 2007 y ha tomado datos de forma casi continua hasta principios de 2022. KM3NeT, aprovechando la experiencia de ANTARES, pretende ser el telescopio de neutrinos más sensible de la próxima generación de detectores. Esta tesis presenta mis contribuciones en ambos detectores. En concreto, la parte técnica del trabajo se ha desarrollado en colaboración con KM3NeT. Está dedicado al estudio de los datos de los sensores de orientación instalados en los módulos de detección ópticos de KM3NeT: desde su calibración antes del despliegue en el mar hasta el análisis de sus datos in situ. Estos sensores permiten una monitorización de los movimientos de los elementos detectores en el mar. Por otro lado, en colaboración con ANTARES se ha desarrollado un análisis de física relacionado con la búsqueda de la aniquilación de la materia oscura en el Sol analizando trece años de datos. Se han obtenido nuevos límites superiores para los flujos de neutrinos y antineutrinos a partir de la aniquilación de materia oscura en el Sol, y a partir de estos, se han derivado límites superiores a la sección eficaz de dispersión de Materia Oscura - Nucleón. Estos resultados mejoran en un factor dos los resultados anteriores de ANTARES y son competitivos con respecto a otros experimentos. / [CA] Els neutrins d'alta energia són partícules esquives: no tenen càrrega, tenen una secció transversal d'interacció molt petita amb la matèria ordinària i la massa és extremadament petita. Els neutrins són una sonda important en l'estudi de l'origen dels raigs còsmics, i també, seguint alguns models de la física més enllà del Model Stardard, es poden produir a partir de la propagació de partícules del model estàndard produïdes per l'aniquilació de la matèria fosca. A l'últim segle, s'han desenvolupat molts enfocaments nous a la física d'astropartícules, tractant de resoldre els enigmes no resolts de l'Univers, com l'origen dels raigs còsmics i l'existència de la matèria fosca. Entre els diferents experiments destaquen, sens dubte, els telescopis de neutrins. Els telescopis de neutrins, consistents en un gran volum d'un medi transparent monitoritzat per sensors òptics per detectar llum de Cherenkov, poden detectar neutrins d'alta energia de fonts galàctiques o extragalàctiques, i també es poden utilitzar per a l'estudi de les propietats dels neutrins. ANTARES i el seu successor KM3NeT són dos telescopis de neutrins ubicats al mar Mediterrani. El telescopi ANTARES va començar a estar operatiu el 2007 i ha pres dades de forma gairebé contínua fins a principis del 2022. KM3NeT, aprofitant l'experiència d'ANTARES, pretén ser el telescopi de neutrins més sensible de la propera generació de detectors. Aquesta tesi presenta les meves contribucions a tots dos detectors. Concrètement, la part tècnica del treball s'ha desenvolupat en col·laboració amb KM3NeT. Està dedicat a l'estudi de les dades dels sensors d'orientació instal·lats als mòduls de detecció òptics de KM3NeT: des del calibratge abans del desplegament al mar fins a l'anàlisi de les seves dades in situ. Aquests sensors permeten una monitorització dels moviments dels elements detectors al mar. D'altra banda, en col·laboració amb ANTARES s'ha desenvolupat una anàlisi de física relacionada amb la recerca de l'aniquilació de la matèria fosca al Sol analitzant tretze anys de dades. S'han obtingut nous límits superiors per als fluxos de neutrins i antineutrins a partir de l'aniquilació de matèria fosca al Sol, i a partir d'aquests, s'han derivat límits superiors a la secció eficaç de dispersió de Materia Fosca - Nucleó. Aquests resultats milloren en un factor dos els resultats anteriors de ANTARES i són competitius respecte a altres experiments. / [EN] High energy Neutrinos are elusive particles: they are chargeless, have a very small cross section with ordinary matter and their mass is extremely small. Neutrinos are an important probe in the study of the origin of cosmic rays but also, following some models of physics Beyond the Standard Model, they can be produced from the decay of Standard Model particles produced by dark matter annihilation. In the last century, many new approaches have been developed in astroparticle physics, trying to solve the unsolved puzzles of the Universe such as the origin of Cosmic Rays and the existence of Dark Matter. Among the many experiments, neutrino telescopes certainly stand out. Neutrinos telescopes, made of large volume of a transparent medium observed by optical sensors, can detect high energy neutrinos from galactic or extra-galactic sources, and they can also be used for the study of neutrino properties. ANTARES and its successor KM3NeT are two neutrino telescopes located in the Mediterranean sea. ANTARES operations started in 2007 and it has taken data almost continuously until the beginning of 2022. KM3NeT, taking advantage from the experience of ANTARES, aims to be the most sensitive neutrino telescope in the next generation of detectors. This thesis presents my contributions to both detectors. In particular, the technical part of the work has been developed in collaboration with KM3NeT. It is devoted to the the study of data from the compasses installed in the KM3NeT detection elements: from their calibration before deployment to the analysis of their data in the sea. These compasses allow a tracking of the movements of the detector elements in the sea. In collaboration with ANTARES a physics analysis related to the search of dark matter annihilation in the Sun has been developed analyzing thirteen years of data. New upper limits for neutrino and antineutrino fluxes from dark matter annihilation in the Sun have been obtained, and from these upper limits on the Dark Matter - Nucleon scattering cross section have been obtained. These results improve previous ANTARES results by a factor of 2 and are competitive with those obtained by other experiments. / Poirè, C. (2022). Dark Matter Searches Towards the Sun with ANTARES and Positioning Studies for KM3NeT [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/188750
6

Positioning System and Acoustic Studies for the KM3NeT deep-sea neutrino telescope

Diego Tortosa, Dídac 28 October 2022 (has links)
[ES] Los neutrinos que viajan por el Universo sin apenas alterar su trayectoria. Esto quiere decir que, de ser detectados recorriendo su camino, se puede saber de donde provienen. Sin embargo, a pesar de ser la partícula más abundante del espacio descubierta hasta ahora, al no poseer carga eléctrica, presenta una baja probabilidad de interacción, necesaria para evidenciar su presencia. Con todo lo anterior, dadas las posibilidades de evidenciar la presencia de un neutrino, se necesita tener enormes volúmenes controlados por sensores capaces de detectarlos. En el caso de que los neutrinos interactúen en un fluido como el agua o el hielo, se pueden proporcionar partículas cargadas como el muon, que viajan a mayor velocidad que la luz, produciendo una radiación llamada luz de Cherenkov. Es esta luz la que los detectores de neutrinos submarinos pretenden detectar, por ello se instalan sensores ópticos en forma de matriz tridimensional. KM3NeT es un detector de neutrinos perteneciente a la nueva generación de este tipo de telescopios submarinos y diseñado para albergar un kilómetro cúbico. Actualmente, se encuentra en fase de construcción en las profundidades del Mar Mediterráneo. Se compone de dos nodos detectores: ARCA que se sitúa a 100 km de la costa de Portopalo di Capo Passero a 3400 m de profundidad, y ORCA a 40 km de la costa de Toulon sumergido a 2400 m. Las Unidades de Detección (DU) usadas se componen de una base que las ancla al lecho marino, 18 Módulos Ópticos Digitales (DOM) sujetos a lo largo de un par de cables que unen la base con una boya. Así, se tiene una DU fija en el fondo del mar, erguida en posición vertical (dada la flotabilidad de sus elementos), pero susceptible a las corrientes marinas. Así que, para ser capaces de reconstruir la trayectoria de un muon detectado, es necesario tener clara la posición y orientación de cada DOM. Por ello, KM3NeT cuenta con un Sistema de Posicionamiento Acústico (APS) y un Sistema de Referencia de Actitud y Rumbo (AHRS). Por un lado, el APS tiene receptores acústicos instalados en cada DOM (sensores piezoeléctricos) y en la base de cada DU (hidrófonos). Además, instala Balizas Acústicas (AB) en posiciones conocidas que emiten señales particulares, que se usan para que el Filtro de Datos Acústico registre su detección en cada receptor. Con el registro de tres o más emisiones pertenecientes a diferentes AB, se puede estimar la posición de cada sensor piezoeléctrico. Por otro lado, el AHRS indica el valor de la guiñada, cabeceo y balanceo, facilitando la orientación del DOM. Con una combinación de APS y AHRS (o de forma independiente), y haciendo uso de un Modelo Mecánico se puede reconstruir la forma de la DU. Así, se conoce la situación de cada DOM con una mayor exactitud. Los AB se caracterizan en laboratorio gracias a un proceso que se ha estandarizado, tanto en realización de medidas como en su posterior análisis. Además, se presenta una posible ubicación para instalarlos, asegurando una buena recepción en todos los DOM. Por último, se pretende aprovechar los receptores del APS en KM3NeT para la posible detección acústica de neutrinos. Existen teorías de que al producirse la interacción de un neutrino ultra-energético se propaga una peculiar señal termo-acústica en forma de Pulso Bipolar (BP), de directividad estrecha para las frecuencias que abarca. Es por esto que se ha diseñado una calibración completa del detector capaz de determinar si el APS está preparado para la posible captura de este tipo de señales. Por ello, se diseña, desarrolla y prueba un algoritmo capaz de seleccionar posibles candidatos de BP. Este algoritmo usa la técnica del espectrograma para analizar la energía, la frecuencia y la duración de cada pulso. Por ahora se han analizado 2.9 días de datos usando tres hidrófonos en ORCA y se han obtenido resultados prometedores para seguir esta línea de investigación, proponiéndose un sistema de alerta para registrar estos eventos de interés. / [CA] Els neutrins són unes partícules subatòmiques que viatgen per l'Univers sense alterar la seva trajectòria. Això significa que, de ser detectats recorrent el seu camí, es pot estudiar la posició del seu origen. Malgrat ser la partícula més abundant de l'espai fins ara descoberta, com no posseeix càrrega elèctrica i sols interacciona dèbilment, presenta molt baixa probabilitat d'interacció, necessària per a evidenciar la seva presència. Llavors, per evidenciar la presència d'un neutrí, es necessita tenir enormes volums controlats per sensors capaços de detectar-los. En el cas d'interactuar en un fluid com l'aigua o el gel, es pot proporcionar un muó (o altres partícules carregades) que viatja a major velocitat que la llum, produint una radiació anomenada llum de Cherenkov. És aquesta llum la que els detectors de neutrins submarins pretenen detectar, per això instal·len sensors òptics en forma de matriu tridimensional. KM3NeT és un detector de neutrins que pertany a la nova generació d'aquest tipus de telescopis submarins i que està dissenyat per a albergar un quilòmetre cúbic. Actualment, es troba en fase de construcció, en les profunditats de la Mar Mediterrània. Es compon de dos nodes detectors: ARCA que es situa a 100 km de la costa de Portopalo di Capo Passero a 3400 m de profunditat, i ORCA a 40 km de la costa de Toulon submergit a 2400 m. Les Unitats de Detecció (DU) utilitzades es componen d'una base que les ancora al fons marí, 18 Mòduls Òptics Digitals (DOM) subjectes al llarg d'un parell de cables que uneixen la base amb una boia. Així, es té una DU fixa en el fons de la mar, alçada en posició vertical (donada la flotabilitat dels seus elements), però susceptible als corrents marins. Així que, per a ser capaços de reconstruir la trajectòria d'un muó detectat, és necessari tenir clara la posició i orientació de cada DOM. Per això, KM3NeT compta amb un Sistema de Posicionament Acústic (APS) i un Sistema de Referència d'Actitud i Rumb (AHRS). D'una banda, l'APS té receptors acústics instal·lats en cada DOM (sensors piezoelèctrics) i en la base de cada DU (hidròfons). A part, instal·la Balises Acústiques (AB) en posicions conegudes que emeten senyals particulars, que s'utilitzen perquè el Filtre de Dades Acústic registra la seva detecció en cada receptor. Amb el registre de tres o més emissions pertanyents a diferents AB, es pot estimar la posició de cada sensor piezoelèctric. D'altra banda, el AHRS indica el valor de l'ullet, cabotejo i balanceig, facilitant l'orientació del DOM. Amb una combinació de APS i AHRS (o de manera independent), i fent ús d'un Model Mecànic es pot reconstruir la forma de la DU. Així es coneix la situació de cada DOM amb una major exactitud. Pel que fa als ABs, cadascun es caracteritza en el laboratori gràcies a un procés que s'ha estandarditzat, tant en realització de mesures com en la seva posterior anàlisi. A més, es presenta una possible ubicació per a instal·lar-los, assegurant una bona recepció en tots els DOM. Finalment, es pretén aprofitar els receptors del APS en KM3NeT per a la possible detecció acústica de neutrins. Existeixen teories que expliquen que en la interacció d'un neutrí ultraenergètic es propaga un peculiar senyal termo-acústica en forma de Pols Bipolar (BP), de directivitat estreta per a les freqüències que té. Així que s'ha dissenyat un calibratge complet del detector capaç de determinar si el APS està preparat per a la possible captura d'aquesta mena de senyals. Per això, es dissenya, desenvolupa i prova un algoritme capaç de seleccionar possibles candidats de BP. Aquest algoritme usa la tècnica de l'espectrograma per analitzar l'energia, la freqüència i la durada de cada pols. Ara com ara s'han analitzat 2.9 dies de dades usant tres hidròfons en ORCA i s'han obtingut resultats prometedors per a seguir aquesta línia de recerca, proposant un sistema d'alerta per a registrar events d'interès. / [EN] Neutrinos are subatomic particles that travel through the Universe with tiny or no change in their trajectory. This means that, if they are detected traveling along their way, the position of their origin can be studied. Despite being the most abundant particle in space so far discovered, as it has no electrical charge and it only interacts, it has a very low probability of interaction, which is necessary to prove its presence. Given the possibilities of evidencing the presence of a neutrino, it is necessary to have huge volumes controlled by sensors capable of detecting them. In the case of interaction in a fluid such as water or ice with sufficient energy, a muon (or other charged particles), which travels faster than the speed of light, may be generated producing radiation called Cherenkov light. This is the light that underwater neutrino telescopes aim to detect, so they have installed optical sensors in the form of a three-dimensional array. KM3NeT is a neutrino detector belonging to the new generation of underwater telescopes designed to hold one cubic kilometer. It is currently under construction in the depths of the Mediterranean Sea. It consists of two detector nodes: ARCA, which is located 100 km off the coast of Portopalo di Capo Passero at a depth of 3400 m, and ORCA, 40 km off the coast of Toulon, submerged at a depth of 2400 m. The Detection Units (DUs) used are composed of a base that anchors them to the sea floor, 18 Digital Optical Modules (DOMs) attached along a pair of cables linking the base to a top buoy. Thus, it has a fixed DU on the seabed, standing in a vertical position (given the buoyancy of its elements), but susceptible to the sea currents. In order to be able to reconstruct the trajectory of a detected muon, it is necessary to know the position and orientation of each DOM. Therefore, KM3NeT has an Acoustic Positioning System (APS) and an Attitude and Heading Reference System (AHRS). On the one hand, the APS has acoustic receivers installed in each DOM (piezoceramic sensors) and at the base of each DU (hydrophones). On the other hand, there are Acoustic Beacons (ABs) at known positions that emit specific signals, which are used for the Acoustic Data Filter to register their detection at each receiver. By recording three or more emissions belonging to different ABs, the position of each piezoceramic sensor can be estimated. On the other hand, the AHRS indicates the value of yaw, pitch, and roll, suggesting the orientation of the DOM. With a combination of APS and AHRS (or independently), and making use of a Mechanical Model, the shape of the DU can be reconstructed. In this way, the situation of each DOM is known with higher accuracy. As far as the ABs are concerned, each one has been characterized in the laboratory thanks to a process that has been standardized, both in terms of measurements and subsequent analysis. In addition, a possible location for the installation of ABs is presented, ensuring good reception in all DOMs. Finally, it is intended to use the APS receivers in KM3NeT for the possible acoustic detection of neutrinos. There are theories that explain that when the interaction of an Ultra-High-Energy neutrino is produced, a peculiar thermoacoustic signal as a Bipolar Pulse (BP), with a narrow angle directivity is propagated. Thus, a complete calibration of the detector has been designed to determine whether the APS is ready for the possible capture of this type of signal. Moreover, an algorithm capable of selecting possible BP candidates is designed, developed, and tested. So far, 2.9 days of data have been analyzed using three hydrophones in ORCA and promising results have been obtained to pursue this line of research, proposing an alert system (trigger) to register the candidate events / Diego Tortosa, D. (2022). Positioning System and Acoustic Studies for the KM3NeT deep-sea neutrino telescope [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/188917

Page generated in 1.0635 seconds