• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 21
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle des récepteurs Kaïnate dans la physiopathologie de l'épilepsie du lobe temporal / Role of kainate receptors in the pathophysiology of temporal lobe epilepsy.

Peret, Angelique 27 November 2014 (has links)
Le kaïnate, est une puissante neurotoxine connue pour induire des convulsions qui rappellent celles trouvées chez les patients atteints d'épilepsie du lobe temporal (ELT). Cependant, le rôle des récepteurs kaïnate activés par le glutamate endogène dans l'ELT n'est pas encore connu. Chez les patients atteints d'ELT et dans les modèles animaux, le tissu neuronal subit une réorganisation majeure. Ce phénomène est particulièrement bien documenté dans le gyrus denté où les axones des cellules granulaires, bourgeonnent pour former un circuit récurrent excitateur aberrant. L'équipe a montré que ces synapses récurrentes moussues nouvellement formées sont aberrantes dans leurs modes de fonctionnement. En effet, en plus des synapses opérant via des récepteurs glutamatergiques de type AMPA présentes en conditions physiologiques, la moitié des synapses aberrantes fonctionnent via des récepteurs de type kaïnate. Les évènements générés par les récepteurs kaïnate ont une cinétique lente, leur permettant de s'intégrer dans une fenêtre temporelle anormalement étendue engendrant un taux de décharge soutenu et fortement rythmique des cellules du gyrus denté de rats épileptiques. L'objectif de mon travail de thèse a été d'étudier l'implication des récepteurs kaïnate dans les activités épileptiques de l'hippocampe. En utilisant différents modèles d'ELT nous avons pu observer que l'absence de ces récepteurs induit une forte diminution de la fréquence des activités épileptiformes dans le gyrus denté in vitro mais également in vivo. Cette étude démontre que les récepteurs kaïnate contenant la sous-unité GluK2 contribuent à la genèse des crises. / Kainate is a potent neurotoxin known to induce acute seizures. However, whether kainate receptors play any role in the pathophysiology of temporal lobe epilepsy (TLE) is not yet known. In animal models of chronic epilepsy, as in human TLE, the hippocampus displays major network reorganization. In particular, sprouting of hippocampal mossy fibers leads to the formation of powerful recurrent excitatory circuits among dentate granule cells, which partly accounts for the enhanced ability of the hippocampus to generate epileptiform activity in human patients and animal models of TLE. At the aberrant recurrent excitatory synapses, mossy fiber inputs impinging on dentate granule cells operate mostly via ectopic kainate receptors and drive synaptic events with abnormal long lasting kinetics not present in naïve conditions. The goal of this work was to explore the pathophysiological implications of kainate receptors in generation of recurrent seizure in TLE through the use of kainate receptors subunit deficient mice and selected pharmacological agents. In an animal model of TLE, we observed a strong reduction of both interictal and ictal activities in the dentate gyrus in vitro and in vivo, in mice lacking the GluK2 subunit, and through the application of a pharmacological agent inhibiting GluK2/GluK5 receptors. Therefore, we demonstrate that aberrant GluK2-containing kainate receptors contribute to chronic seizures in TLE, urging for the development of antiepileptic strategies targeting these receptors.
12

Maturation morpho-fonctionnelle de la synapse fibre moussue/cellule pyramidale de CA3 dans l’hippocampe / Morpho-functional maturation of hippocampal mossy fiber synapses

Lanore, Frédéric 26 October 2010 (has links)
Les synapses se forment selon plusieurs étapes comprenant la stabilisation des contacts nouvellement formés et leur maturation. Ces différentes étapes dépendent d’une mise en place coordonnée entre la terminaison pré- et postsynaptique. Les protéines composant la présynapse et les récepteurs ionotropiques du glutamate ont des rôles clés dans ces processus. Lors de ma thèse, je me suis intéressé à l’implication de la protéine présynaptique Bassoon lors de la maturation des synapses glutamatergiques entre les fibres moussues et les cellules pyramidales de CA3 dans l’hippocampe. Cette synapse constitue un modèle attractif pour l’étude de la maturation synaptique car elle suit des étapes de maturation morphologique et fonctionnelle bien définies. Bassoon est une des premières protéines se mettant en place au niveau des contacts synaptiques nouvellement formés. Par des approches électrophysiologiques, nous avons montré que la protéine Bassoon était importante pour l’organisation du site de libération de neurotransmetteur durant les deux premières semaines de vie post-natale chez la souris.Les récepteurs kaïnate jouent un rôle important dans la régulation de l’activité de réseau au cours du développement post-natal. Cependant l’impact de l’activation de ces récepteurs sur la maturation synaptique est peu connu. J’ai pu mettre en évidence un délai dans la maturation fonctionnelle de la synapse fibre moussue/cellule pyramidale de CA3 chez les souris déficientes pour la sous-unité GluK2 des récepteurs kaïnate (GluK2-/-). Afin de comprendre si ce délai de maturation fonctionnelle est corrélé à un retard dans la maturation morphologique de cette synapse, nous avons mis en place des infections de lentivirus codant pour une protéine membranaire fluorescente (YFP) chez le souriceau nouveau-né (P1-P2). A l’aide de microscopie confocale et de reconstruction en 3D, nous avons ainsi pu décrire la maturation morphologique de la synapse fibre moussue/cellule pyramidale de CA3. Cela m’a également permis de corréler la maturation fonctionnelle à la maturation morphologique et mes résultats montrent également un retard dans la mise en place des synapses chez les souris GluK2-/-. L’ensemble de cette étude révèle l’importance de l’activité synaptique et de la coordination entre mise en place de la pré- et de la postsynapse au cours de la maturation synaptique. / The formation of synapses follows different steps including synaptogenesis and maturation. These different steps depend on coordinated pre- and post-synaptic assembly. Pre-synaptic proteins and ionotropic glutamate receptors play a central role in these processes. During my thesis, I have been interested in the implication of the presynaptic protein Bassoon in the maturation of the hippocampal mossy fiber to CA3 pyramidal cell glutamatergic synapses. This synapse constitutes an attractive model for the study of synaptic maturation because it follows several steps of defined morphological and functional maturation. Bassoon in one of the first protein present at newly formed synaptic contacts. By electrophysiological approaches, we showed that Bassoon is important for the organization of the active zone during the first two postnatal weeks.Kainate receptors play an important role in the regulation of network activity during postnatal development. However, the impact of kainate receptors activation on synaptic maturation is less known. I showed a delay in functional maturation of mossy fiber synapses in mice deficient for the GluK2 subunit of kainate receptors (GluK2-/-). To know if this delay is correlated to morphological alterations of this synapse, we setup in vivo lentiviral infections of membrane fluorescent protein (YFP) in mouse pups (P1-P2). Using confocal microscopy and 3D reconstruction, we described the morphological maturation of mossy fiber synapses. We were able to correlate functional and morphological maturation and our results also showed an impairment in the formation of mossy fiber synapses in GluK2-/-. Together, these data reveal the importance of synaptic activity and of the coordination of pre- and post-synaptic assembly during synaptic maturation.
13

Etude structure/fonction des récepteurs kaïnate et de leur modulation / Structure/function study and modulation of kainate receptors

Veran, Julien 08 December 2011 (has links)
Les récepteurs de type kaïnate (rKA) appartiennent, avec les récepteurs de type NMDA (rNMDA) et les recepteurs de type AMPA (rAMPA), à la famille des récepteurs canaux glutamatergiques (iGluR). Les propriétés fonctionelles des rKA contenant la sous-unité GluK3 en font des récepteurs tout à fait singuliers. Une étude réalisée dans le laboratoire a montré que la faible sensibilité de ces récepteurs au glutamate est liée à une entrée très rapide dans l’état désensibilisé et que la fonction de ces récepteurs pourrait être amplifiée par des modulateurs endogènes.Parmi les modulateurs potentiels de la fonction des rKA pré-synaptiques, nous avons choisi d’étudier le zinc, en raison de sa concentration importante dans les vésicules des terminaisons des axones des cellules granulaires du gyrus denté (fibres moussues). En dépit du rôle proposé des rKA contenant la sous unité GluK3 dans la régulation pré-synaptique aux synapses MF-CA3, la modulation de ces récepteurs par le zinc n’a jamais été étudiée.Grâce à l’enregistrement électrophysiologique des courants GluK3 exprimés dans les cellules HEK-293, nous avons montré que le zinc facilite les courants des récepteurs contenant la sous-unité GluK3, activés par le glutamate. L’analyse des cinétiques, ainsi que la modélisation, montrent que l’effet facilitateur du zinc est dû à la réduction de l’entrée dans l’état désensibilisé des récepteurs GluK3. Grâce à la mutagénèse dirigée et l’étude cristallographique, nous avons pu déterminer le site de liaison du zinc, constitué de l’aspartate 759, de l’histidine 762 et de l’aspartate 730, et localisé dans l’interface de dimérisation du domaine de liaison de l’agoniste (LBD).Cette étude décrit pour la première fois un nouveau site de modulation positive de la fonction des rKA. / Glutamate released at excitatory synapses acts on ligand-gated ionotropic receptors which fall into three classes: NMDA, AMPA and kainate receptors.At hippocampal mossy fiber synapses onto CA3 pyramidal cells, KARs are present both at the pre- and postsynaptic levels. Postsynaptic KARs are composed of the GluK2, GluK4 and GluK5 subunits, whereas presynaptic KARs are thought to comprise the GluK2 and GluK3 subunits. The functional properties of GluK3 (and GluK2/GluK3) receptors set it apart from the other ionotropic glutamate receptors. In particular, its sensitivity to glutamate is the lowest of all known ionotropic glutamate receptors, due in large part to fast desensitization of receptors with one or two bound glutamate molecules. The low agonist sensitivity of this receptor raises questions about its relevance for synaptic function. Therefore, it is possible that endogenous modulators may potentiate its function.Among potential endogenous modulators of KAR function, we chose to address the role of zinc, because of the large amounts contained in mossy fiber terminals. Zinc is thought to be accumulated into synaptic vesicles, and is co-released with glutamate in the extracellular milieu during neuronal activity. Zinc has been reported to inhibit most of native and recombinant KARs. Despite the proposed role of at hippocampal mossy fiber synapses, although modulation of GluK3-containing KARs by zinc has not yet been addressed.In this study, we show that zinc greatly potentiates recombinant GluK3 receptor currents evoked by glutamate. Zinc markedly slows receptor desensitization and increases apparent affinity for glutamate. Crystallographic studies and analysis of chimeric GluK2/GluK3 KARs and of GluK3 bearing selected point mutations, allowed us to identify the zinc binding domain defined by D759, H762, Q756 and D730, and localized in a region forming the interface between two GluK3 subunits in an LBD dimer assembly. Based on these structure-function studies and on modeling of KAR activity, we show that zinc plays a very distinct role on GluK3-KARs by stabilizing the interaction between dimers of LBD thereby reducing desensitization.Given the proposed localization of GluK3 close to zinc containing synaptic vesicles, zinc may be an endogenous allosteric modulator for native GluK3-KARs, and its binding site a new pharmacological target.
14

Interakce glutamátových receptorů kainátového typu se steroidními látkami / The interaction of kainate subtypes of glutamate receptors with steroid compounds.

Fraňková, Denisa January 2017 (has links)
Kainate receptors belong to the family of glutamate receptors, which include NMDA, AMPA and δ receptors. Glutamate receptors are widely found in the brain and therefore they are very dynamically investigated, especially from view of pharmacology, because there is great potential for finding new and more specific modulators which could be used in the treatment of neurodegenerative diseases. The aim of this work was to extend the knowledge about the influence of neurosteroids on homomeric kainate receptors (GluK1, GluK2, GluK3) in which is the study of modulation by neurosteroids still at the beginning. We have investigated interactions of homomeric kainate receptors with selected neurosteroids (pregnenolone sulfate, pregnanolone sulfate, dehydroepiandrosterone, dehydroepiandrosterone sulfate) by using patch clamp method in the configuration of whole-cell recording and also by using microfluorometry. We have found out that the biggest modulating effect on homomeric kainate receptors is caused by pregnenolone sulfate, which inhibits glutamate responses of these receptors. Keywords kainate receptor, glutamate, neurosteroids, steroids, patch-clamp technique
15

Impact du genre et du modèle sur les mécanismes d’épileptogénèse dans le cerveau immature

Foadjo Awoume, Berline 04 1900 (has links)
Les modèles kainate et pentylènetétrazole représentent deux modèles d’épilepsie du lobe temporal dont les conséquences à long terme sont différentes. Le premier est un modèle classique d’épileptogénèse avec crises récurrentes spontanées tandis que le second se limite aux crises aigües. Nous avons d’abord caractérisé les différents changements survenant dans les circuits excitateurs et inhibiteurs de l’hippocampe adulte de rats ayant subi des crises à l’âge immature. Ensuite, ayant observé dans le modèle fébrile une différence du pronostic lié au genre, nous avons voulu savoir si cette différence était aussi présente dans des modèles utilisant des neurotoxines. L’étude électrophysiologique a démontré que les rats KA et PTZ, mâles comme femelles, présentaient une hyperactivité des récepteurs NMDA au niveau des cellules pyramidales du CA1, CA3 et DG. Les modifications anatomiques sous-tendant cette hyperexcitabilité ont été étudiées et les résultats ont montré une perte sélective des interneurones GABAergiques contenant la parvalbumine dans les couches O/A du CA1 des mâles KA et PTZ. Chez les femelles, seul le DG était légèrement affecté pour les PTZ tandis que les KA présentaient, en plus du DG, des pertes importantes au niveau de la couche O/A. Les évaluations cognitives ont démontré que seuls les rats PTZ accusaient un déficit spatial puisque les rats KA présentaient un apprentissage comparable aux rats normaux. Cependant, encore une fois, cette différence n’était présente que chez les mâles. Ainsi, nos résultats confirment qu’il y a des différences liées au genre dans les conséquences des convulsions lorsqu’elles surviennent chez l’animal immature. / Kainate and pentylenetetrazole models represent two animal models of temporal lobe epilepsy in which long-term consequences differ. The first model is a classical model of epileptogenesis with spontaneous recurrent seizures while the second one is limited to acute seizures. We wanted to characterize the difference in changes which occur in excitatory and inhibitory systems of the hippocampus of adult males and females having suffered an episode of status epilepticus during the immature stage of life. Besides having noticed a difference between genders in the febrile model, our second objective was to see if this difference was also present in models using neurotoxins. Electrophysiology recordings indicated that KA and PTZ rats (both male and female) showed a hyperactivity of NMDA receptors in CA1, CA3 and DG pyramidal cells. Anatomical modifications causing hyperactivity were studied and results show a selective loss of specific GABA interneurons PV in the O/A layer of CA1 region of the hippocampus in KA and PTZ male rats. However in female rats, only the DG layer was slightly affected in PTZ while female KA presented losses in both DG and O/A layers. Cognitive evaluation indicated that only PTZ rats showed a spatial impairment since KA rats had a similar learning pattern as controls. However, once again, that difference was observed only in males and not in females. In summary, our results confirmed that there is a difference between genders regarding brain damages after having suffered an episode of status epilepticus during the immature stage.
16

Altération de la barrière hémato-encéphalique et autoimmunité dans l'épilepsie : rôle des Immunoglobulines G et recherche de biomarqueurs. / Blood-brain barrier impairment and autoimmunity in epilepsy : role of Immunoglobulins G and biomarkers identification.

Michalak, Zuzanna 28 June 2012 (has links)
L'épilepsie est une maladie neurologique chronique caractérisée par des crises spontanées et récurrentes. Les crises sont générées par un déséquilibre dans le fonctionnement des neurotransmetteurs et des canaux ioniques qui contrôlent l'excitabilité. L'épileptogenèse est majoritairement associée à des pertes neuronales, une gliose, une inflammation plus ou moins importants. Un tiers des patients deviennent réfractaires. Récemment, plusieurs équipes ont montré une association entre les épilepsies focales pharmacorésistantes et la rupture de la barrière hémato-encéphalique (BHE). De plus, une implication du système immunitaire ainsi qu'une cause auto-immune de l'épilepsie ont été suggérées. Dans cette thèse, nous avons observé dans le tissu de patients atteints d'épilepsie pharmacorésistante du lobe temporal (ELT), des fuites d'Immunoglobulines G (IgG) dans le parenchyme et leur accumulation dans les neurones présentant des signes de neurodégénérescence. Le récepteur d'IgG de grande affinité FcyRI est surexprimé sur les cellules ayant une morphologie de type microglie/ macrophages, tandis que le récepteur de faible affinité FcyRIII et le récepteur inhibiteur FcγRII sont moins présents. Dans ce même tissu nous avons noté que les protéines du complément C3c et C5b9 sont exprimées. Ensuite, nous avons étudié si le modèle murin d'épilepsie focale induite par injection intra-amygdalienne de kaïnate reproduit la physiopathologie de l'ELT associée à une rupture de la BHE. ZO-1, la principale protéine des jonctions serrées, présente un marquage discontinu indiquant que la BHE a été affectée. Nous avons remarqué des fuites d'IgGs et d'albumine ainsi que leur accumulation dans le parenchyme coïncidant avec la survenue des crises. La présence d‘IgG dans l'épilepsie pourrait également avoir une cause auto-immune. Nous avons utilisé des puces à protéines pour identifier des antigènes qui induisent une réponse immunitaire, dans le plasma des patients atteints d'ELT, Nous avons sélectionné 19 auto-anticorps spécifiques qui peuvent servir de potentiels biomarqueurs diagnostiques L'ensemble de ces résultats suggère que les fuites d'IgG sont associées à une déficience neuronale, conduisant à des changements immunologiques dans le foyer épileptique qui participent à la pathogénèse de l'ELT. Nous pensons qu'une meilleure interprétation des profils de ces auto-anticorps pourrait offrir de nouvelles perspectives thérapeutiques. / Epilepsy is a chronic neurologic disorder characterized by recurrent unprovoked seizures. Seizures are generated by an imbalance in the functioning of neurotransmitters and ion channels that control excitability. Epileptogenesis is mostly associated with neuronal loss, gliosis, and inflammation more or less important. A third of patients become drug refractory. Recently, several teams have shown an association between drug-resistant focal epilepsy and disruption of the blood-brain barrier (BBB). In addition, a possible role of the immune system and an autoimmune nature in epilepsy has been suggested. In this thesis, in the tissue of patients with drug-resistant temporal lobe epilepsy (TLE), leakage of immunoglobulin G (IgG) into the parenchyma and IgG accumulation in neurons with attendant signs of neurodegeneration was observed. In addition, the high affinity IgG receptor, FcγRI was expressed on microglia/macrophage shaped cells. The expression of the low affinity IgG receptor, FcγRIII and the inhibitory IgG receptor, FcγRII was decreased. In the same tissue the complement proteins C3c and C5b9 were present on astrocyte/ microglia and macrophage/ microglia shaped cells respectively. Then, we evaluated whether the mouse model of focal epilepsy induced by intra-amygdala microinjection of kainic acid reproduced a pathophysiology of TLE associated with BBB impairment. ZO-1, the main tight junction protein presented discontinuous staining indicating that BBB was affected. Both IgG and albumin extravasations from blood vessels were noted and its parenchymal accumulation was concomitant with seizure occurrence. Another hypothesis of IgG presence in epilepsy incriminates an auto-immune cause. Protein microarray technology was used for identification in pooled plasma samples, of antigens that bind plasma antibody from TLE patients. 19 potential autoantibodies were identified as potential diagnostic biomarkers. Together, these observations suggest that IgG leakage is associated with neuronal impairment, leading to immunological changes in epileptic focus involved in the pathogenesis of TLE. A better interpretation of the profiles of these autoantibodies could offer new therapeutic and diagnostic perspectives.
17

Impact du genre et du modèle sur les mécanismes d’épileptogénèse dans le cerveau immature

Foadjo Awoume, Berline 04 1900 (has links)
Les modèles kainate et pentylènetétrazole représentent deux modèles d’épilepsie du lobe temporal dont les conséquences à long terme sont différentes. Le premier est un modèle classique d’épileptogénèse avec crises récurrentes spontanées tandis que le second se limite aux crises aigües. Nous avons d’abord caractérisé les différents changements survenant dans les circuits excitateurs et inhibiteurs de l’hippocampe adulte de rats ayant subi des crises à l’âge immature. Ensuite, ayant observé dans le modèle fébrile une différence du pronostic lié au genre, nous avons voulu savoir si cette différence était aussi présente dans des modèles utilisant des neurotoxines. L’étude électrophysiologique a démontré que les rats KA et PTZ, mâles comme femelles, présentaient une hyperactivité des récepteurs NMDA au niveau des cellules pyramidales du CA1, CA3 et DG. Les modifications anatomiques sous-tendant cette hyperexcitabilité ont été étudiées et les résultats ont montré une perte sélective des interneurones GABAergiques contenant la parvalbumine dans les couches O/A du CA1 des mâles KA et PTZ. Chez les femelles, seul le DG était légèrement affecté pour les PTZ tandis que les KA présentaient, en plus du DG, des pertes importantes au niveau de la couche O/A. Les évaluations cognitives ont démontré que seuls les rats PTZ accusaient un déficit spatial puisque les rats KA présentaient un apprentissage comparable aux rats normaux. Cependant, encore une fois, cette différence n’était présente que chez les mâles. Ainsi, nos résultats confirment qu’il y a des différences liées au genre dans les conséquences des convulsions lorsqu’elles surviennent chez l’animal immature. / Kainate and pentylenetetrazole models represent two animal models of temporal lobe epilepsy in which long-term consequences differ. The first model is a classical model of epileptogenesis with spontaneous recurrent seizures while the second one is limited to acute seizures. We wanted to characterize the difference in changes which occur in excitatory and inhibitory systems of the hippocampus of adult males and females having suffered an episode of status epilepticus during the immature stage of life. Besides having noticed a difference between genders in the febrile model, our second objective was to see if this difference was also present in models using neurotoxins. Electrophysiology recordings indicated that KA and PTZ rats (both male and female) showed a hyperactivity of NMDA receptors in CA1, CA3 and DG pyramidal cells. Anatomical modifications causing hyperactivity were studied and results show a selective loss of specific GABA interneurons PV in the O/A layer of CA1 region of the hippocampus in KA and PTZ male rats. However in female rats, only the DG layer was slightly affected in PTZ while female KA presented losses in both DG and O/A layers. Cognitive evaluation indicated that only PTZ rats showed a spatial impairment since KA rats had a similar learning pattern as controls. However, once again, that difference was observed only in males and not in females. In summary, our results confirmed that there is a difference between genders regarding brain damages after having suffered an episode of status epilepticus during the immature stage.
18

Rôle des récepteurs kainate dans la transmission synaptique :<br />une étude dans l'hippocampe de rat contrôle et dans un modèle animal<br />d'épilepsie du lobe temporal

Epsztein, Jérôme 09 December 2006 (has links) (PDF)
Le glutamate est le principal neurotransmetteur excitateur du système nerveux central.<br />Il agit sur trois grands types de récepteurs ionotropiques, les récepteurs AMPA, NMDA et<br />kainate. Les récepteurs AMPA sont les principaux médiateurs de la transmission synaptique<br />excitatrice dans le système nerveux. Récemment, ce rôle a également été attribué aux<br />récepteurs kainate mais dans des conditions d'activation synaptique intense lorsque de<br />grandes quantités de glutamate sont libérées. La question s'est alors posé de savoir si ces<br />récepteurs participaient à la transmission synaptique excitatrice dans des conditions d'activité<br />plus physiologiques.<br />La première partie de ce travail a consisté à réexaminer les conditions d'activation des<br />récepteurs kainate post-synaptiques dans les cellules pyramidales de la région CA3 et dans les<br />interneurones de la région CA1 de l'hippocampe de rat contrôle. Nos résultats montrent que<br />les récepteurs kainate peuvent être activés par de faibles quantités de glutamate libéré dans<br />ces deux types cellulaires. Nos quantifications révèlent que, dans ces conditions de faible<br />libération de glutamate, leur participation à la transmission synaptique excitatrice est très<br />significative. Nous montrons également que dans les cellules pyramidales de CA3 les<br />récepteurs AMPA et KA sont spécifiquement co-activés au niveau post-synaptique au niveau<br />des fibres moussues en provenance des cellules granulaires.<br />Un bourgeonnement pathologique des fibres moussues est observé dans les modèles<br />animaux et chez les patients atteints d'épilepsie du lobe temporal, une des formes les plus<br />fréquentes d'épilepsie chez l'homme. Après bourgeonnement, les fibres moussues viennent<br />former des synapses aberrantes sur les cellules granulaires. Dans une seconde partie de ce<br />travail nous nous sommes demandés si ce bourgeonnement pouvait modifier la transmission<br />synaptique portée par les récepteurs kainate dans les cellules granulaires dans un modèle<br />animal d'épilepsie du lobe temporal. Nos résultats montrent que, contrairement aux cellules<br />granulaires de rats contrôles, la transmission synaptique excitatrice passe par l'activation de<br />récepteurs kainate dans les cellules granulaires d'animaux épileptiques chroniques. Nos<br />quantifications montrent que dans ces cellules la transmission synaptique portée par les<br />récepteurs kainate est très significative et est directement liée au bourgeonnement des fibres<br />moussues caractéristique des épilepsies du lobe temporal.<br />En conclusion, ces travaux montrent le rôle important des récepteurs kainate dans la<br />transmission synaptique dans des conditions physiologiques. Nos travaux montrent également<br />que la plasticité post-lésionnelle peut induire une transmission synaptique aberrante portée par l'activation des récepteurs kainate dans un modèle animal d'épilepsie du lobe temporal.
19

Mécanismes moléculaires de la stabilisation synaptique des récepteurs du glutamate de type kaïnate dans les cellules pyramidales de CA3 / Molecular mechanisms for the synaptic stabilization of kainate receptors in CA3 pyramidal cells

Fievre, Sabine 19 November 2015 (has links)
Les récepteurs ionotropiques du glutamate peuvent être compartimentés de manière très spécifique au niveau des différentes afférences synaptiques d’un neurone. Dans les neurones pyramidaux de CA3, les récepteurs de type kaïnate (rKA) post-synaptiques sont localisés à la synapse formée entre les fibres moussues et les cellules pyramidales de CA3 (synapse FM-CA3) mais ils sont totalement absents des autres afférences glutamatergiques sur ce même neurone. Nous avons cherché à comprendre les mécanismes moléculaires de cette compartimentation subcellulaire. En réalisant une cartographie fonctionnelle des récepteurs du glutamate par décageage focalisé de glutamate dans les cellules pyramidales de CA3, nous avons montré que les rKA présentent une localisation subcellulaire strictement confinée dans les excroissances épineuses, éléments post-synaptiques des synapses FM-CA3, et sont exclus des compartiments somato-dendritiques, contrairement aux récepteurs AMPA. Nous avons identifié une séquence du domaine C-terminal de GluK2a nécessaire pour la stabilisation des rKA. Cette séquence est responsable d’une interaction avec la protéine d’adhérence N-cadhérine. L’altération de la fonction de la N-cadhérine dans les cellules pyramidales de CA3 entraine une déstabilisation des rKA à la synapse FM-CA3. Ces travaux suggèrent que plusieurs mécanismes participent à la compartimentation des rKA à la synapse FMCA3 impliquant le recrutement et la stabilisation des rKA par les N-cadhérines. / Distinct subtypes of ionotropic glutamate receptors can be segregate to specific synaptic inputs in a given neuron. In CA3 pyramidal cells (PCs), kainate receptors (KARs) are present at mossy fiber (mf) synapses and absent from other glutamatergic inputs. The mechanisms for such a constrained subcellular segregation is not known. We have investigated the molecular determinants responsible for the subcellular segregation of KARs at mf-CA3 synapses. Using functional mapping of glutamate receptors by focal glutamate uncaging we show that KARs display a strictly confined expression on thorny excrescences, the postsynaptic elements of mf-CA3 synapses, being excluded from extrasynaptic somatodendritic compartments, at variance with AMPA receptors. We have identified a sequence in the GluK2a C-terminal domain necessary for restricted expression of KARs which is responsible for GluK2a interaction with N-Cadherin. Targeted deletion of N-Cadherin or overexpression of a dominant negative N-Cadherin in CA3 PCs greatly induce a destabilization of KARs at the mf-CA3 synapses. Our findings suggest that multiple mechanisms combine to control the compartmentalization of KARs at mf-CA3 synapses, including a stringent control of the amount of GluK2 subunit in CA3 PCs, a limited number of slots for KARs, and the recruitment/stabilization of KARs by N-Cadherins.
20

Neurotoxins and Neurotoxic Species Implicated in Neurodegeneration

Segura-Aguilar, Juan, Kostrzewa, Richard M. 01 December 2004 (has links)
Neurotoxins, in the general sense, represent novel chemical structures which when administered in vivo or in vitro, are capable of producing neuronal damage or neurodegeneration - with some degree of specificity relating to neuronal phenotype or populations of neurons with specific characteristics (.e., receptor type, ion channel type, astrocyte-dependence, etc.). The broader term 'neurotoxin' includes this categorization but extends the term to include intra- or extracellular mediators involved in the neurodegenerative event, including necrotic and apoptotic factors. Moreover, as it is recognized that astrocytes are essential supportive satellite cells for neurons, and because damage to these cells ultimately affects neuronal function, the term 'neurotoxin' might reasonably be extended to include those chemical species which also adversely affect astrocytes. This review is intended to highlight developments that have occurred in the field of 'neurotoxins' during the past 5 years, including MPTP/MPP+, 6-hydroxydopamine (6-OHDA), meth-amphetamine; salsolinol; leukoaminochrome-o-semi-quinone; rotenone; iron; paraquat; HPP+; veratridine; soman; glutamate; kainate; 3-nitropropionic acid; peroxynitrite anion; and metals (copper, manganese, lead, mercury). Neurotoxins represent tools to help elucidate intra- and extra-cellular processes involved in neuronal necrosis and apoptosis, so that drugs can be developed towards targets that interrupt the processes leading towards neuronal death.

Page generated in 0.0585 seconds