Spelling suggestions: "subject:"kalman, filtering"" "subject:"kalman, iltering""
221 |
Sigma-Point Kalman filters for probabilistic inference in dynamic state-space models /Van der Merwe, Rudolph. January 2004 (has links)
Thesis (Ph. D.)--OGI School of Science & Engineering at OHSU, 2004. / Includes bibliographical references (leaves 327-344).
|
222 |
GFP-based sensing and state estimation in transgenic plant cell culture /Lu, Wei-Bin, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 199-213). Also available on the Internet.
|
223 |
GFP-based sensing and state estimation in transgenic plant cell cultureLu, Wei-Bin, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 199-213). Also available on the Internet.
|
224 |
Interpreting and forecasting the semiconductor industry cycleLiu, Wenxian, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 79-81). Also available on the Internet.
|
225 |
Learning in short-time horizons with measurable costs /Mullen, Patrick B. January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Computer Science, 2006. / Includes bibliographical references (p. 93-96).
|
226 |
Dynamic feature space modelling, filtering and self-tuning control of stochastic systems a systems approach with economc and social applications /Otter, Pieter W. January 1900 (has links)
Thesis (Ph. D.)--Rijksuniversiteit te Groningen. / At head of title: Rijksuniversiteit te Groninge. Summary in Dutch. Parts of this thesis are based on material originally appearing in Statistica Neerlandica, 1978, Automatica, 1981 and the proceedings of Dynamic Modelling and Control of National Economics 1981 ... Includes index. Bibliography: p. 153-159.
|
227 |
Calibration, characterization, and linear quadratic Gaussian estimation of sensor feedback signals for a novel ocean wave energy linear test bed /Haller, Christopher A. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2011. / Printout. Includes bibliographical references (leaves 115-116). Also available on the World Wide Web.
|
228 |
Essays on open market operations, the maturity composition of the public debt, and the term structureKopchak, Seth J. January 2010 (has links)
Thesis (Ph. D.)--West Virginia University, 2010. / Title from document title page. Document formatted into pages; contains vii, 138 p. : ill. Includes abstract. Includes bibliographical references (p. 128-132).
|
229 |
Real time estimation of ship motions using Kalman filtering techniquesJanuary 1983 (has links)
Michael S. Triantafyllou, Marc Bodson, Michael Athans. / Caption title. / Bibliography: p. 19-20. / Ames Research Center Grant NGL-22-009-124
|
230 |
Structure from motion estimation using a nonlinear Kalman filterVenter, Chris (Christian Johannes) 12 1900 (has links)
Thesis (MScEng)--University of Stellenbosch, 2002. / ENGLISH ABSTRACT: Structure from Motion is defined as the problem of extracting the 3d motion of a camera
moving through a scene, as well as the 3d structure of the scene, from the image sequence
produced by the camera over time. Several methods based on the Kalman filter have
been proposed in the past, mostly based on the Extended Kalman filter. We propose
an algorithm based on the dual Unscented Kalman filter to estimate the structure and
motion of an object under perspective projection. It is shown that the algorithm is stable
and accurate under synthetic as well as real-world conditions. / AFRIKAANSE OPSOMMING: Struktuur vanuit Beweging is 'n rekenaar-visie probleem waarin die 3d beweging van 'n
kamera deur 'n ruimte, asook die 3d struktuur van die ruimte, bepaal moet word slegs
vanuit die 2d beelde in die beeldreeks wat deur die kamera geneem word. 'n Verskeie reeks
oplossings, gebaseer op die Kalman filter, is reeds voorgestelom die probleem op te los.
Meeste van die oplossings implementeer die "Extended Kalman filter", of EKF. Ons stel
'n algoritme voor, gebaseer op 'n nuwe nie-lineêre benadering tot die Kalman filter, die
sogenaamde "Unscented Kalman filter", of UKF. Hierdie algoritme bepaal die struktuur
en beweging onder 'n perspektief-projeksie kamera. Daar word getoon dat die algoritme
stabiel en akkuraat funskioneer onder sintetiese sowel as reële toevoer.
|
Page generated in 0.0716 seconds