Spelling suggestions: "subject:"katalysatorer"" "subject:"analysatorer""
1 |
Studies of bimetallic particle formation in reforming catalystsGjervan, Torbjørn January 2000 (has links)
Paper 1 is reprinted with kind permission of Elsivier, sciencedirect.com
|
2 |
Studies of bimetallic particle formation in reforming catalystsGjervan, Torbjørn January 2000 (has links)
Paper 1 is reprinted with kind permission of Elsivier, sciencedirect.com
|
3 |
Vad attraherar kvinnliga IT-studenter vid val av arbetsplats? : En kvantitativ jämförande studie mellan män och kvinnors preferenser vid val av arbetsplats / What attracts female it-students when chosing workplace? : A quantitative comparative study between men and women's preferences in choosing a place of workWesterlund, Johanna, Franzén, Julia January 2017 (has links)
In today's labor market, it is important for organizations growth to both recruit and keep talented people and the understanding of what is decisive for a person when choosing where to seek employment, is therefore more important than ever. Although Sweden is ranked as one of the world's leading countries in terms of gender equality and IT is one of the country's largest professions, women only account for one-fifth of all those working in the profession. One reason why there is a lack of women in the industry, according to previous studies, may be that men and women´s preferences in choosing a workplace differ. Previous studies show that men and women have different preferences in choosing a workplace and it may be one of the reasons why they choose to work in different industries. Basically, we chose to investigate whether there are differences between men and women's preferences, which could be the reason for the lack of women working in IT in the automotive industry. In order to find out, we have investigated the preferences of men and women in the choice of workplace as well as the differences between men and women's perceptions of the automotive industry. A quantitative survey in the form of an inquiry was conducted and the results showed that the discrepancy between men and women's preferences is low and that prejudices such as previous research on women's relation to IT show are not fully correct.
|
4 |
Biodiesel production from rape seed oil catalyzed by calcium oxide doped with lithium / Biodieselproduktion från rapsolja katalyserad av Kalciumoxid dopad med LitiumAbdalla, Abdulbasit, Odgren, Emilia January 2023 (has links)
Biodiesel ses som ett av de främsta substituten för fossila bränslen, då den relativt enkelt kan appliceras i redan existerande dieselmotorer. Dagens produktion av biodiesel använder sig av homogena katalysatorer som inte återanvänds i processen, men för en mer cirkulär och i längden en billigare process ses heterogena katalysatorer som ett alternativ. Syftet med denna studie var att undersöka litium dopad kalciumoxid katalytiska egenskaper, de optimala förhållandena för reaktionen och även kinetiken för reaktionen. Den valda katalysatorn syntetiserades med kalcinering och sedan testades den katalytiska förmågan i reaktionen vid olika reaktionsförhållanden, för att finna de optimala förhållandena. Även katalysatorns fysiska egenskaper analyserades och kinetiken för reaktionen. De optimala förhållanden för transesterifieringen bestämdes till 3 h, 1:6 olja- metanolförhållande, 60°C och 5 vikts% katalysator, där 96% utbyte av biodiesel uppnåddes. Övriga utbyten från de andra försöken var betydligt lägre, vilket kan bero på icke optimala förhållanden, men även relativ dålig katalytisk förmåga. Ytarea och porstorlek konstateras vara små, vilket påverkar den katalytiska förmågan negativt. Anledningen till katalysatorns egenskaper beror huvudsakligen på tillverkningsprocessen, men även mängden litium i dopningen. Kinetiken visar en oväntad reaktionsutveckling med initialt hög koncentration FAME (Fatty acid Methylester), vilket troligen beror på felkällor.
|
5 |
Kinetic and Deactivation Studies of Hydrodesulfurization CatalystsSteiner, Petr January 2002 (has links)
<p>Hydrodesulfurization is an important part of the hydrotreating process. More stringent regulations on the quality of fuels bring new requirements to the catalytic processes. The removal of sulfur has become a key issue in the oil refining and this work aims to address several aspects of the process.</p><p>Kinetic studies of the hydrodesulfurization reaction over conventional (molybdenum-based) and new (Pt/Y-zeolite) catalysts are reported. The hydrodesulfurization of both the real oil (light gas oil from Statoil Mongstad refinery) and model compounds (thiophene and dibenzothiophene) over a NiMo/γ-Al<sub>2</sub>O<sub>3</sub> catalyst were studied. In a high-pressure study of the light gas oil, substituted alkyl-DBTs were found to be the most difficult to desulfurize and the order of reactivity was found to be DBT > 4-MDBT > 4,6-DMDBT. Steric hindrance together with electronic effects were identified as possible reasons for this behavior. The difference in reactivities of the individual compounds was found to decrease with the increasing reaction temperature. A gas chromatograph equipped with the atomic emission detector (GC-AED) was used for the analysis of the individual components of the oil.</p><p>The initial deactivation and the steady-state kinetics were studied during the HDS of thiophene at atmospheric pressure. Unpromoted Mo/γ-Al<sub>2</sub>O<sub>3</sub>, CoMo/γ-Al<sub>2</sub>O<sub>3</sub>, NiMo/γ-Al<sub>2</sub>O<sub>3</sub>, and phosphorus modified NiMo/γ-Al<sub>2</sub>O<sub>3</sub> were used for the deactivation study, while NiMo/γ-Al<sub>2</sub>O<sub>3</sub>,CoMo/γ-Al<sub>2</sub>O<sub>3</sub>, and Pt/Y-zeolite (with three different pretreatments) were used for the steadystate study. Several experiments related to the deactivation of Mo/γ-Al<sub>2</sub>O<sub>3</sub> and NiMo/γ-Al<sub>2</sub>O<sub>3 </sub>catalysts prepared with the chelating agent (NTA) were also performed and NTA was found to have no significant effect on the activity of the catalysts.</p><p>In the deactivation study, a fast initial decrease in the activity was observed on all the catalysts. However, nickel promoted catalysts were found to be more resistant to deactivation than unpromoted ones. The presence of phosphorus slightly increased the activity of the catalyst towards the thiophene HDS, but had no effect on the deactivation behavior. Several methods to regenerate the catalyst were investigated. During the resulfiding experiments, a difference between Mo/γ-Al<sub>2</sub>O<sub>3</sub> and NiMo/γ-Al<sub>2</sub>O<sub>3</sub> was observed. Deactivation of the Mo catalyst was more severe with increasing temperature, while for the NiMo catalyst the opposite behavior was observed. Carbon deposition on catalysts followed the similar trend: More carbon was observed on the Mo catalyst at higher temperatures, while the opposite is true for NiMo. The restoration of the activity of NiMo was complete, while the reactivation of the Mo catalyst was only partial. The results from the reactivation experiments with pure H<sub>2</sub> and inert gas (helium) suggest that several mechanisms of the restoration of activity exist: Resulfiding of the desulfided active sites, hydrogenation and removal of the deposited carbonaceous species, and the desorption of the reactants and products from the active sites of the catalyst. Based on the observed results, the higher hydrogenation activity of nickel is assumed to be the reason for the behavior. Hydrogenation causes the faster removal of the deposited carbonaceous species and this leads to the conclusion that the desulfiding of the active sites and the adsorption of the reaction species is significantly less pronounced on the NiMo/γ-Al<sub>2</sub>O<sub>3 </sub>catalyst.</p><p>Characterization studies show differences between standard and NTA-based catalysts. The higher amount of carbon on the NTA catalysts is attributed to the presence of the carboncontaining precursor - NTA. The changes in the surface area and the pore volume were observed only during the sulfiding process. In the case of standard catalysts the surface area and the pore volume decreased, while for the NTA-based catalysts the opposite is true. No change in the surface area and the pore volume with the increasing time on stream indicates that the deactivation is not due to structural changes of the catalyst. The amount of sulfur was found to be constant during the time on stream for all the catalysts.</p><p>In the steady-state study of the HDS of thiophene, CoMo and NiMo catalysts were found to be equally active. The activity of the Pt/Y-zeolite catalyst was found to be comparable to conventional catalysts when based on the amount of active material, but a fast deactivation was observed. The product selectivities during the HDS of thiophene were found to be the same for all standard catalysts, but slightly different for the Pt/Y-zeolite catalyst. This was attributed to a higher hydrogenation activity of the Pt/Y-zeolite catalyst. </p><p>The inhibition effect of other sulfur compounds and aromatics on the high-pressure hydrodesulfurization of dibenzothiophene (DBT), the so-called “matrix effect” was studied. Thiophene and DMDS have the same inhibiting effect on the total conversion of DBT, but differences exist in the effect on the selectivities of the products at low concentrations. The results indicate that the inhibiting effect of H<sub>2</sub>S on the direct desulfurization route is stronger than the effect of thiophene on the hydrogenation pathway. In the study of aromatics, both toluene and naphthalene affect the total conversion of DBT. Naphthalene was found to be a much stronger inhibitor and inhibits mainly the direct desulfurization pathway, while the hydrogenation route is more affected by the presence of toluene.</p>
|
6 |
Kinetic and Deactivation Studies of Hydrodesulfurization CatalystsSteiner, Petr January 2002 (has links)
Hydrodesulfurization is an important part of the hydrotreating process. More stringent regulations on the quality of fuels bring new requirements to the catalytic processes. The removal of sulfur has become a key issue in the oil refining and this work aims to address several aspects of the process. Kinetic studies of the hydrodesulfurization reaction over conventional (molybdenum-based) and new (Pt/Y-zeolite) catalysts are reported. The hydrodesulfurization of both the real oil (light gas oil from Statoil Mongstad refinery) and model compounds (thiophene and dibenzothiophene) over a NiMo/γ-Al2O3 catalyst were studied. In a high-pressure study of the light gas oil, substituted alkyl-DBTs were found to be the most difficult to desulfurize and the order of reactivity was found to be DBT > 4-MDBT > 4,6-DMDBT. Steric hindrance together with electronic effects were identified as possible reasons for this behavior. The difference in reactivities of the individual compounds was found to decrease with the increasing reaction temperature. A gas chromatograph equipped with the atomic emission detector (GC-AED) was used for the analysis of the individual components of the oil. The initial deactivation and the steady-state kinetics were studied during the HDS of thiophene at atmospheric pressure. Unpromoted Mo/γ-Al2O3, CoMo/γ-Al2O3, NiMo/γ-Al2O3, and phosphorus modified NiMo/γ-Al2O3 were used for the deactivation study, while NiMo/γ-Al2O3,CoMo/γ-Al2O3, and Pt/Y-zeolite (with three different pretreatments) were used for the steadystate study. Several experiments related to the deactivation of Mo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts prepared with the chelating agent (NTA) were also performed and NTA was found to have no significant effect on the activity of the catalysts. In the deactivation study, a fast initial decrease in the activity was observed on all the catalysts. However, nickel promoted catalysts were found to be more resistant to deactivation than unpromoted ones. The presence of phosphorus slightly increased the activity of the catalyst towards the thiophene HDS, but had no effect on the deactivation behavior. Several methods to regenerate the catalyst were investigated. During the resulfiding experiments, a difference between Mo/γ-Al2O3 and NiMo/γ-Al2O3 was observed. Deactivation of the Mo catalyst was more severe with increasing temperature, while for the NiMo catalyst the opposite behavior was observed. Carbon deposition on catalysts followed the similar trend: More carbon was observed on the Mo catalyst at higher temperatures, while the opposite is true for NiMo. The restoration of the activity of NiMo was complete, while the reactivation of the Mo catalyst was only partial. The results from the reactivation experiments with pure H2 and inert gas (helium) suggest that several mechanisms of the restoration of activity exist: Resulfiding of the desulfided active sites, hydrogenation and removal of the deposited carbonaceous species, and the desorption of the reactants and products from the active sites of the catalyst. Based on the observed results, the higher hydrogenation activity of nickel is assumed to be the reason for the behavior. Hydrogenation causes the faster removal of the deposited carbonaceous species and this leads to the conclusion that the desulfiding of the active sites and the adsorption of the reaction species is significantly less pronounced on the NiMo/γ-Al2O3 catalyst. Characterization studies show differences between standard and NTA-based catalysts. The higher amount of carbon on the NTA catalysts is attributed to the presence of the carboncontaining precursor - NTA. The changes in the surface area and the pore volume were observed only during the sulfiding process. In the case of standard catalysts the surface area and the pore volume decreased, while for the NTA-based catalysts the opposite is true. No change in the surface area and the pore volume with the increasing time on stream indicates that the deactivation is not due to structural changes of the catalyst. The amount of sulfur was found to be constant during the time on stream for all the catalysts. In the steady-state study of the HDS of thiophene, CoMo and NiMo catalysts were found to be equally active. The activity of the Pt/Y-zeolite catalyst was found to be comparable to conventional catalysts when based on the amount of active material, but a fast deactivation was observed. The product selectivities during the HDS of thiophene were found to be the same for all standard catalysts, but slightly different for the Pt/Y-zeolite catalyst. This was attributed to a higher hydrogenation activity of the Pt/Y-zeolite catalyst. The inhibition effect of other sulfur compounds and aromatics on the high-pressure hydrodesulfurization of dibenzothiophene (DBT), the so-called “matrix effect” was studied. Thiophene and DMDS have the same inhibiting effect on the total conversion of DBT, but differences exist in the effect on the selectivities of the products at low concentrations. The results indicate that the inhibiting effect of H2S on the direct desulfurization route is stronger than the effect of thiophene on the hydrogenation pathway. In the study of aromatics, both toluene and naphthalene affect the total conversion of DBT. Naphthalene was found to be a much stronger inhibitor and inhibits mainly the direct desulfurization pathway, while the hydrogenation route is more affected by the presence of toluene.
|
7 |
Chelating agents in NiMo sulfided catalysts and the effect of nitrogen compounds on hydrodearomatization and hydrodenitrogenation reactions / Kelateringsmedel i NiMo-sulfiderade katalysatorer och effekten av kväveföreningar på hydrodearomatisering och hydrodenitrogeneringsreaktionerLukovicsová, Lilla January 2022 (has links)
Hydrering är en viktig process för att producera produkter med önskade egenskaper samt att uppfylla de lagliga krav som existerar med avseende på miljö och hälsa. Reaktionerna som sker vid hydreringen är katalytiska vilket innebär att förstå sam utnyttja de mest lämpliga katalysatorerna är av yttersta vikt. Avsvavling (HDS) är en av de mest studerade reaktionerna medan avaromatisering (HDA) samt borttagandet av kväve (HDN) är diskuterade samt förstådda i lägre grad. Trots det är aromatiska samt kväverika föreningar naturligt förekommande i matningar till hydreringsreaktorerna där de organiska kväveföreningarna är inhibitorer. I detta arbete är målet att tillverka samt utvärdera några hydreringskatalysatorer med fokus på deras prestanda för HDA och HDN reaktionerna. Den bästa möjliga tekniken idag för tillverkningen av hydreringskatalysatorer utnyttjar kelateringsreagens vid beredningen. Detta har visat sig ha en positiv inverkan på egenskaperna och aktivteten vid hydrering för NiMo-katalysatorer. För att undersöka detta närmare har två typer av katalysatorer tillverkats, en med kelateringsreagens (typ II) och en utan (typ I). Dessa var sedan utvärderade i dess HDA och HDN aktiveter. Katalysatorerna var tillverkade samt karaktäriserade vid KTH och sedan aktiverade via sulfidering samt utvärderade vid Nynas AB. Aktiviteten för de sulfiderade katalysatorerna var utvärderade i ett surrogatsystem bestående av fenantren (PHE) som modell för aromatiska föreningar samt karbazol (CBZ) eller akridin (ACR) som modell för icke-basiskt samt basiskt organisk-kväve. Aktivitetsutvärderingen utfördes i en porlbäddreaktor där aktiviteten undersöktes vid närvarandet samt avsaknandet av de organiska kväveföreningarna. När matningen byttes, en så kallad modeswitch, ändras aktiviteten beroende på de betingelser som undersöktes. Reaktortemperaturen varierade mellan 300 °C och 320 °C vid ett konstant systemtryck på 120 barg. Katalysatornsaktivitet var positivt korrelerad med reaktortemperaturen där en lägre aktivtetuppmättes vid 300 °C jämfört med 320 °C. Det visade sig även att båda typerna av organiskt kväve påverkade aktivteten negativt vid båda undersökta temperaturerna. Utöver det så var de basiska kväveföreningarna mer inhiberande jämfört med de icke-basiska föreningarna för båda katalysatorerna. Inhiberingen orsakad av karbazol visade sig vara helt reversibel medan akridininhiberingen antydde på mer permanenta effekter för typ II katalsatorn. Dessa resultat antyder, trots de preliminära antagandena, att typ I katalysatorn var bättre än typ II katalysatorn. / Hydrotreating processes are of high importance in helping to obtain the desired characteristics of products as well as to comply with the legislation regarding health hazards and environmental pollution. Hydrotreating reactions are catalytic reactions which imply that the understanding and utilization of the most suitable catalysts is crucial. While hydrodesulfurization is a vastly studied branch of hydrotreating, hydrodearomatization (HDA), and hydrodenitrogenation (HDN) processes are less discussed and understood. However, aromatic compounds along with nitrogen-containing inhibitors are naturally present in the hydrotreater feeds. Therefore, the aim of this study was the preparation and evaluation of hydrotreating catalysts with the main focus on HDA and HDN reactions. According to the current state of the art, the utilization of chelating agents during preparation has a positive impact on the characteristics and activity of hydrotreating catalysts therefore NiMo catalysts with (Type II) and without (Type I) a chelating agent were prepared and evaluated towards HDA and HDN reactions. The catalysts were prepared and characterized at KTH and then activated (sulfided) and evaluated at Nynas AB. The activity of the sulfided catalysts was evaluated using surrogate mixture models containing phenanthrene (PHE) as an aromatic compound, and carbazole (CBZ) or acridine (ACR). The latter ones were representing two types of nitrogen-containing inhibitors, non-basic and basic. The activity testing was carried out in a trickle-bed microreactor during three-step experiments in the presence and absence of the organic nitrogen compounds (mode switches). During the mode switches the activity of the catalysts under varying conditions was investigated. The operating temperature of the reactor varied between 300 and 320°C under constant H2 pressure of 120 barg. The catalytic activity was positively correlated with temperature with the catalysts exhibiting lower activities at 300°C than at 320°C. It is noteworthy that the activity of all the catalysts was hindered by the presence of both nitrogen compounds at all temperatures with the basic nitrogen (ACR) being more inhibitory for both catalysts. CBZ inhibition to the HDA reactions showed reversibility, while ACR had a more permanent inhibiting effect in the case of the Type II catalyst. The results indicated that despite the preliminary assumptions, the Type I catalyst outperformed the Type II.
|
Page generated in 0.0646 seconds