• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stimuli-Responsive Janus Particles

Kirillova, Alina 19 April 2016 (has links) (PDF)
Janus particles, named after the two faced Roman god Janus, possess unique asymmetry and combine two distinct functions at their opposite sides, allowing them to target complex self-assembled architectures and materials inaccessible for homogeneous building blocks. In this study, three areas regarding the topic of Janus particles were explored: the synthesis of Janus particles, their (self-) assembly, and applications. In the first part of the work, we have drawn our attention to the optimization of the synthetic procedures concerning the preparation of Janus particles and to the extending of the current Janus particle library by adding new geometries to the list. In the case of spherical Janus particles, we have developed an easy approach to tailor the Janus ratio of the resulting particles, thus, extending the possibilities of the Pickering emulsion approach for the creation of a variety of Janus particle architectures. Additionally, a new methodology was employed to measure directly and in situ the position/contact angle of the prepared Janus particles with different Janus ratios at a water-oil interface. It was further concluded that having simply two different functionalities on a particle surface does not necessarily imply amphiphilic behavior: only in the case of large wettability contrasts our particles were in a true Janus regime. In the case of platelet-like Janus particles, we have developed a completely new approach for their large-scale synthesis, which involved a reduced number of steps compared to the spherical Janus particles. In the second part of the work, the assembly behavior of various kinds of functional spherical Janus particles was investigated depending on the nature of the Janus particles and the surrounding media conditions. Oppositely charged, uncharged amphiphilic, and charged amphiphilic Janus particles were fabricated comprising different responsive polymers on their surface, and their assembly was investigated depending on the pH value of the dispersion, the ionic strength, or the solvent. It was found that, under specific conditions, the Janus particles formed hierarchical chain-like structures in solutions, which were not observed in the case of the homogeneous particle mixtures. The obtained results indicate that the fundamental understanding of the Janus particle assembly mechanisms is crucial for the programmed formation of desired structures. In the third part of the work, we have focused on the applications of our developed hybrid hairy Janus particles and proposed two main directions that would benefit from the unique properties or architecture of the Janus particles. The first direction is based on the exploitation of the superior interfacial activity of the Janus particles and their use for interfacial catalysis. The second proposed direction for the application of Janus particles is based on their use as building blocks for functional structured surfaces. The prepared surfaces were thoroughly characterized and tested for their performance toward anti-icing as well as anti-fouling applications. Ultimately, the developed functional surfaces based on Janus particles as building blocks are very promising for their future application in the coating technology.
2

Stimuli-Responsive Janus Particles: Design and Investigation of their Self-Assembly in Bulk and at Interfaces

Kirillova, Alina 06 April 2016 (has links)
Janus particles, named after the two faced Roman god Janus, possess unique asymmetry and combine two distinct functions at their opposite sides, allowing them to target complex self-assembled architectures and materials inaccessible for homogeneous building blocks. In this study, three areas regarding the topic of Janus particles were explored: the synthesis of Janus particles, their (self-) assembly, and applications. In the first part of the work, we have drawn our attention to the optimization of the synthetic procedures concerning the preparation of Janus particles and to the extending of the current Janus particle library by adding new geometries to the list. In the case of spherical Janus particles, we have developed an easy approach to tailor the Janus ratio of the resulting particles, thus, extending the possibilities of the Pickering emulsion approach for the creation of a variety of Janus particle architectures. Additionally, a new methodology was employed to measure directly and in situ the position/contact angle of the prepared Janus particles with different Janus ratios at a water-oil interface. It was further concluded that having simply two different functionalities on a particle surface does not necessarily imply amphiphilic behavior: only in the case of large wettability contrasts our particles were in a true Janus regime. In the case of platelet-like Janus particles, we have developed a completely new approach for their large-scale synthesis, which involved a reduced number of steps compared to the spherical Janus particles. In the second part of the work, the assembly behavior of various kinds of functional spherical Janus particles was investigated depending on the nature of the Janus particles and the surrounding media conditions. Oppositely charged, uncharged amphiphilic, and charged amphiphilic Janus particles were fabricated comprising different responsive polymers on their surface, and their assembly was investigated depending on the pH value of the dispersion, the ionic strength, or the solvent. It was found that, under specific conditions, the Janus particles formed hierarchical chain-like structures in solutions, which were not observed in the case of the homogeneous particle mixtures. The obtained results indicate that the fundamental understanding of the Janus particle assembly mechanisms is crucial for the programmed formation of desired structures. In the third part of the work, we have focused on the applications of our developed hybrid hairy Janus particles and proposed two main directions that would benefit from the unique properties or architecture of the Janus particles. The first direction is based on the exploitation of the superior interfacial activity of the Janus particles and their use for interfacial catalysis. The second proposed direction for the application of Janus particles is based on their use as building blocks for functional structured surfaces. The prepared surfaces were thoroughly characterized and tested for their performance toward anti-icing as well as anti-fouling applications. Ultimately, the developed functional surfaces based on Janus particles as building blocks are very promising for their future application in the coating technology.

Page generated in 0.0696 seconds