• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preprocessing to Deal with Hard Problems

Hols, Eva-Maria Christiana 22 May 2020 (has links)
In der klassischen Komplexitätstheorie unterscheiden wir zwischen der Klasse P von in Polynomialzeit lösbaren Problemen, und der Klasse NP-schwer von Problemen bei denen die allgemeine Annahme ist, dass diese nicht in Polynomialzeit lösbar sind. Allerdings sind viele Probleme, die wir lösen möchten, NP-schwer. Gleichzeitig besteht eine große Diskrepanz zwischen den empirisch beobachteten und den festgestellten worst-case Laufzeiten. Es ist bekannt, dass Vorverarbeitung oder Datenreduktion auf realen Instanzen zu Laufzeitverbesserungen führt. Hier stoßen wir an die Grenze der klassischen Komplexitätstheorie. Der Fokus dieser Arbeit liegt auf Vorverarbeitungsalgorithmen für NP-schwere Probleme. Unser Ziel ist es, bestimmte Instanzen eines NP-schweren Problems vorverarbeiten zu können, indem wir die Struktur betrachten. Genauer gesagt, für eine gegebene Instanz und einen zusätzlichen Parameter l, möchten wir in Polynomialzeit eine äquivalente Instanz berechnen, deren Größe und Parameterwert nur durch eine Funktion im Parameterwert l beschränkt ist. In der parametrisierten Komplexitätstheorie heißen diese Algorithmen Kernelisierung. Wir werden drei NP-schwere Graphenprobleme betrachten, nämlich Vertex Cover, Edge Dominating Set und Subset Feedback Vertex Set. Für Vertex Cover werden wir bekannte Ergebnisse für Kernelisierungen vereinheitlichen, wenn der Parameter die Größe einer Entfernungsmenge zu einer gegebenen Graphklasse ist. Anschließend untersuchen wir die Kernelisierbarkeit von Edge Dominating Set. Es stellt sich heraus, dass die Kernelisierbarkeit deutlich komplexer ist. Dennoch klassifizieren wir die Existenz einer polynomiellen Kernelisierung, wenn jeder Graph in der Graphklasse eine disjunkte Vereinigung von konstant großen Komponenten ist. Schließlich betrachten wir das Subset Feedback Vertex Set Problem und zeigen, dass es eine randomisierte polynomielle Kernelisierung hat, wenn der Parameter die Lösungsgröße ist. / In classical complexity theory, we distinguish between the class P, of polynomial-time solvable problems, and the class NP-hard, of problems where the widely-held belief is that we cannot solve these problems in polynomial time. Unfortunately, many of the problems we want to solve are NP-hard. At the same time, there is a large discrepancy between the empirically observed running times and the established worst-case bounds. Using preprocessing or data reductions on real-world instances is known to lead to huge improvements in the running time. Here we come to the limits of classical complexity theory. In this thesis, we focus on preprocessing algorithms for NP-hard problems. Our goal is to find ways to preprocess certain instances of an NP-hard problem by considering the structure of the input instance. More precisely, given an instance and an additional parameter l, we want to compute in polynomial time an equivalent instance whose size and parameter value is bounded by a function in the parameter l only. In the field of parameterized complexity, these algorithms are called kernelizations. We will consider three NP-hard graph problems, namely Vertex Cover, Edge Dominating Set, and Subset Feedback Vertex Set. For Vertex Cover, we will unify known results for kernelizations when parameterized by the size of a deletion set to a specified graph class. Afterwards, we study the existence of polynomial kernelizations for Edge Dominating Set when parameterized by the size of a deletion set to a graph class. We point out that the existence of polynomial kernelizations is much more complicated than for Vertex Cover. Nevertheless, we fully classify the existence of polynomial kernelizations when every graph in the graph class is a disjoint union of constant size components. Finally, we consider graph cut problems, especially the Subset Feedback Vertex Set problem. We show that this problem has a randomized polynomial kernelization when the parameter is the solution size.
2

Sparse instances of hard problems

Dell, Holger 01 September 2011 (has links)
Diese Arbeit nutzt und verfeinert Methoden der Komplexitätstheorie, um mit diesen die Komplexität dünner Instanzen zu untersuchen. Dazu gehören etwa Graphen mit wenigen Kanten oder Formeln mit wenigen Bedingungen beschränkter Weite. Dabei ergeben sich zwei natürliche Fragestellungen: (a) Gibt es einen effizienten Algorithmus, der beliebige Instanzen eines NP-schweren Problems auf äquivalente, dünne Instanzen reduziert? (b) Gibt es einen Algorithmus, der dünne Instanzen NP-schwerer Probleme bedeutend schneller löst als allgemeine Instanzen gelöst werden können? Wir formalisieren diese Fragen für verschiedene Probleme und zeigen, dass positive Antworten jeweils zu komplexitätstheoretischen Konsequenzen führen, die als unwahrscheinlich gelten. Frage (a) wird als Kommunikation modelliert, in der zwei Akteure kooperativ eine NP-schwere Sprache entscheiden möchten und dabei möglichst wenig kommunizieren. Unter der komplexitätstheoretischen Annahme, dass coNP keine Teilmenge von NP/poly ist, erhalten wir aus unseren Ergebnissen erstaunlich scharfe untere Schranken für interessante Parameter aus verschiedenen Teilgebieten der theoretischen Informatik. Im Speziellen betrifft das die Ausdünnung von Formeln, die Kernelisierung aus der parameterisierten Komplexitätstheorie, die verlustbehaftete Kompression von Entscheidungsproblemen, und die Theorie der probabilistisch verifizierbaren Beweise. Wir untersuchen Fragestellung (b) anhand der Exponentialzeitkomplexität von Zählproblemen. Unter (Varianten) der bekannten Exponentialzeithypothese (ETH) erhalten wir exponentielle untere Schranken für wichtige #P-schwere Probleme: das Berechnen der Zahl der erfüllenden Belegungen einer 2-KNF Formel, das Berechnen der Zahl aller unabhängigen Mengen in einem Graphen, das Berechnen der Permanente einer Matrix mit Einträgen 0 und 1, das Auswerten des Tuttepolynoms an festen Punkten. / In this thesis, we use and refine methods of computational complexity theory to analyze the complexity of sparse instances, such as graphs with few edges or formulas with few constraints of bounded width. Two natural questions arise in this context: (a) Is there an efficient algorithm that reduces arbitrary instances of an NP-hard problem to equivalent, sparse instances? (b) Is there an algorithm that solves sparse instances of an NP-hard problem significantly faster than general instances can be solved? We formalize these questions for different problems and show that positive answers for these formalizations would lead to consequences in complexity theory that are considered unlikely. Question (a) is modeled by a communication process, in which two players want to cooperatively decide an NP-hard language and at the same time communicate as few as possible. Under the complexity-theoretic hypothesis that coNP is not in NP/poly, our results imply surprisingly tight lower bounds for parameters of interest in several areas, namely sparsification, kernelization in parameterized complexity, lossy compression, and probabilistically checkable proofs. We study the question (b) for counting problems in the exponential time setting. Assuming (variants of) the exponential time hypothesis (ETH), we obtain asymptotically tight, exponential lower bounds for well-studied #P-hard problems: Computing the number of satisfying assignments of a 2-CNF formula, computing the number of all independent sets in a graph, computing the permanent of a matrix with entries 0 and 1, evaluating the Tutte polynomial at fixed evaluation points.

Page generated in 0.0399 seconds