• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 40
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of activiated carbon fibres

Tomlinson, John Brian January 1992 (has links)
No description available.
2

Finite element analysis of interfacial failure mechanisms in fibre-reinforced composites

Nath, Rajat Bushan January 1998 (has links)
No description available.
3

Parallel-lay aramid ropes for use as tendons in prestressed concrete

Chambers, John Joseph January 1986 (has links)
No description available.
4

Coalescence and filtration of emulsions using fibres

Jayarajah, James Nirmal January 2000 (has links)
No description available.
5

Manufacture and Characterization of Fiber Reinforced Epoxy for Application in Cowling Panels of Recreational Aircraft

2014 April 1900 (has links)
In this study, glass and Kevlar® fibers reinforced epoxy composites were manufactured and characterized using different techniques. The effect of thermal exposure on the flexural properties of the composites was investigated to ascertain its suitability for the intended application in cowling panels of light engine aircraft. Thermogravimetric analysis (TGA) was carried out on both reinforced and unreinforced epoxy resin to evaluate their thermal stability at elevated temperatures. Dynamic mechanical thermal analysis was carried out to evaluate the effects of thermal exposure, applied strain and frequency on the dynamic mechanical response of the composites. The effects of the applied resin hardener and thermal exposure on the flexural strength, flexural modulus and dynamic impact response of the composites were also investigated. The flexural properties were determined using 3-point bending test, while the impact test was carried out using Split Hopkinson Pressure Bar (SHPB). TGA analysis of the reinforced and unreinforced epoxy showed no significant weight loss until the test samples were heated above 250°C in an inert atmosphere. Dynamic Mechanical Thermal Analysis (DMTA) on the composites indicated the glass transition temperature to lie between 80 and 100°C. The results of the flexural and impact tests showed that the mechanical integrity of both glass and Kevlar® fiber reinforced epoxy composites remained unimpaired by radiative or convective heat exposure for up to 3 h until the exposure temperature exceeded 200°C. This is much higher than the service temperature of cowling panels of light engine recreational aircrafts. When the manufactured fiber reinforced epoxy composites were exposed to temperature above 200°C matrix degradation occurred, which became very significant when the exposure temperature was higher than 250°C. Extensive delamination and matrix cracking occurred when the composites were exposed to the temperature range 250°C - 300°C for 1 h. Fiber-matrix debonding was not observed in the composite except after failure under impact loading. This is evidence of the fact that the epoxy matrix was adequately wetted by both the glass and Kevlar® fibers resulting in the strong fiber/matrix interfacial bonding. While the Kevlar® reinforced epoxy displayed a better damage tolerance under flexural and impact loading, glass fiber reinforced epoxy showed higher strength but lower damage tolerance. Glass fiber reinforced epoxy also showed more resistance to damage under exposure to thermal flux than Kevlar® reinforced epoxy. Under impact loading, the Kevlar® reinforced composite failed by delamination with no fiber rupture, whereas the glass fiber reinforced epoxy failed by matrix cracking, debonding, fiber rupture and fiber pullout. The results from this research have established the effect of radiative and convective thermal exposure on the mechanical behavior of the fabricated Kevlar® fiber and glass reinforced epoxy composites. The maximum temperature reached on the inner surface of the cowling panels of a typical light engine recreational aircraft due to heat radiations from the engine block has been estimated to be about 65°C. This is lower than the glass transition temperature of the epoxy matrix as obtained from DMTA. The low temperature rise is due to inflow cooling air into the cowling chamber in flight. The results of the current investigations suggest the suitability of composite materials for the intended application. The intensity of thermal exposure, to which the materials will be exposed in such application, may not cause any significant damage to the mechanical integrity of the composite. However, since the difference between the possible exposure temperature and the glass transition temperature is only a little over 20°C, a layer of thermal insulator on the inner surface of the cowling made of fiber reinforced epoxy will be desirable to further sustain the mechanical integrity of the composites when selected for use as choice materials for cowling panels of light engine aircraft.
6

Factors contributing to the degradation of poly(p-phenylene benzobisoxazole) (PBO) fibers under elevated temperature and humidity conditions

O'Neil, Joseph M 30 October 2006 (has links)
The moisture absorption behavior of Zylon fibers was characterized in various high temperature and high humidity conditions in a controlled environment. The results of these thermal cycling tests show that PBO fibers not only absorb, but also retain moisture (approximately 0.5-3%) when exposed to elevated temperature and humidity cycles. Also, the impurities of Zylon fibers were characterized through the use of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and solid state Nuclear Magnetic Resonance (NMR). These tests demonstrated that, in addition to other impurities, PBO fibers may contain up to 0.55 weight percent phosphorus, and that this phosphorus is present in the form of phosphoric acid. It was also shown through accelerated hydrolytic degradation tests that production procedures used to neutralize the acid present in the fibers have a beneficial effect on the hydrolytic performance of the fiber. The data collected in this study was then compared and contrasted to known Kevlar studies, identifying similarities, differences, and potential trends. The results of these tests seem to indicate that there is accelerated acid catalyzed hydrolysis occurring in the fiber which is causing these fibers to degrade at an increased rate. This condition is further accelerated by heat and humidity induced permanent fiber swelling.
7

Factors contributing to the degradation of poly(p-phenylene benzobisoxazole) (PBO) fibers under elevated temperature and humidity conditions

O'Neil, Joseph M 30 October 2006 (has links)
The moisture absorption behavior of Zylon fibers was characterized in various high temperature and high humidity conditions in a controlled environment. The results of these thermal cycling tests show that PBO fibers not only absorb, but also retain moisture (approximately 0.5-3%) when exposed to elevated temperature and humidity cycles. Also, the impurities of Zylon fibers were characterized through the use of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and solid state Nuclear Magnetic Resonance (NMR). These tests demonstrated that, in addition to other impurities, PBO fibers may contain up to 0.55 weight percent phosphorus, and that this phosphorus is present in the form of phosphoric acid. It was also shown through accelerated hydrolytic degradation tests that production procedures used to neutralize the acid present in the fibers have a beneficial effect on the hydrolytic performance of the fiber. The data collected in this study was then compared and contrasted to known Kevlar studies, identifying similarities, differences, and potential trends. The results of these tests seem to indicate that there is accelerated acid catalyzed hydrolysis occurring in the fiber which is causing these fibers to degrade at an increased rate. This condition is further accelerated by heat and humidity induced permanent fiber swelling.
8

Parallel-lay aramid ropes for use in structural engineering

Guimaraes, Giuseppe Barbosa January 1988 (has links)
No description available.
9

Seismic Assessment of Unreinforced Masonry Walls

Wijanto, Ludovikus Sugeng January 2007 (has links)
This thesis focuses on the seismic performance of unreinforced masonry wall perforated with a door opening representing typical URM walls of many aged masonry buildings in Indonesia. To obtain a test result that will be able to represent the local conditions, the experiments have been conducted in the Research Institute for Human Settlements (RIHS) laboratory in Bandung-Indonesia. Two 75 % unreinforced masonry (URM) walls with a 1½-wythe of solid clay-brick were constructed in Dutch bond configuration and tested until failure under quasi-static-reversed cyclic loading. Both units were loaded vertically by constant loads representing gravity loads on the URM wall’s tributary area. Both models were constructed using local materials and local labours. Two features were taken into account. First, it accommodated the influence of flanged wall and second, the URM wall was built on the stone foundation. The first URM wall represent the plain existing URM building in Indonesia and second strengthened by Kevlar fibre. It was observed from the test results that the URM wall Unit-1 did not behave as a brittle structure. It could dissipate energy without loss of strength and had a post-elastic behaviour in terms of “overall displacement ductility” value of around 8 to 10. As predicted, the masonry material was variable and non homogeneous which caused the hysteresis loop to be non symmetrical between push and pull lateral load directions. It can be summarized that Kevlar fibre strengthening technique is promising and with great ease of installation. Although Kevlar material is more expensive when compared to other fabrics as long as it was applied at the essential locations and in limited volumes, it can significantly increase the in-plane URM wall capacity. With appropriate arrangements of Kevlar fibre, a practicing engineer will be able to obtain a desired rocking mechanism in the masonry structure. Another advantage for the architectural point of view, very thin Kevlar fibres do not reduce the architectural space. Studies have also been undertaken to analyze the in-plane response of plain URM wall before and after retrofiting using the current seismic standard and the Finite Element Method (FEM).
10

Accelerated Aging Effects on Kevlar KM2 Fiber Survivability

Yang, Tony 02 October 2013 (has links)
Kevlar materials offer excellent tensile and thermal properties but can rapidly degrade under exposure to hot and humid environmental conditions. Currently Kevlar fiber's survival probability comes from a single filament test. Unfortunately, the single filament test is a tedious process and prone to operator bias, leading to inaccurate survival function that does not represent the actual survival function. This research aims to validate the fiber bundle test to replace the single filament test in extracting Kevlar’s survival function. Another important aspect is determining the factors that cause the fiber to lose its properties. This research also aims to determine the factors that degrade Kevlar fibers and those factors’ combined effects on degrading the KM2 fiber. This information is essential for safety factor design when exposure to these environmental factors would cause the Kevlar KM2 to fail prematurely. Results from experimental data and analysis indicate that the fiber bundle test is a good replacement for single filament tests and estimation techniques can determine the bundle Weibull parameters. Furthermore, the survival function for treated fibers is better if the bundle is lubricated. The accelerated aging experiments show that accelerated aging is possible with combined temperature and moisture. Kevlar KM2 bundle conditioned at 270 °C and 150 g water for 3 hours lost over 95% of its breaking strength. This is comparable to Kevlar bundles treated for over 500 hours in 250 °C or treated for over 100 days in 100% relative humidity environment at 80 °C found in literature.

Page generated in 0.0233 seconds