• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1524
  • 532
  • 216
  • 216
  • 34
  • 26
  • 22
  • 17
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • Tagged with
  • 3478
  • 830
  • 435
  • 406
  • 332
  • 272
  • 266
  • 255
  • 160
  • 154
  • 151
  • 141
  • 135
  • 134
  • 130
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Reactivity Meter Analysis of Rod-Drop Experiments in Zed-2

Moniz, Manuel 09 1900 (has links)
One of two project reports. The other one is designated PART A: McMASTER (ON-CAMPUS) PROJECT / <p> A reactivity meter code based on point kinetics was developed. Rod-drop experiments performed in the ZED-2 reactor tested the code for various detector and rod-drop positions. A delayed neutron hold-up effect was observed whenever a rod was dropped close to a detector. A better understanding of this effect was obtained through a theoretical analysis of the pertinent experiments. The three-dimensional kinetics code, CERBERUS, was used for the theoretical analysis. </p> / Thesis / Master of Engineering (MEngr)
612

High Temperature Oxidation and Nitriding Kinetics of Zirconium

Rosa, Casimir 06 1900 (has links)
<p> An investigation is reported on the oxidation properties of alpha-zirconium at 850°C and beta-zirconium at 950°C in oxygen for periods extending to 400 hr. and 100 hr. , respectively. Nitriding kinetics of zirconium in the range of 750° to 1000°C up to 200 hr. were investigated. The kinetics wen determined by volumetric and gravimetric techniques and may be represented by' a parabolic relationship after a period of more rapid oxidation. The uptakes of oxygen or nitrogen were consistent with the mathematical evaluations based on multi-phase diffusion models. Two diffusion models were advanced; one based upon differential and the other upon integral solutions of diffusion equations. It was possible to separate quantatively the oxygen or nitrogen partitions in the scale, alpha and beta phases of zirconium. </p> <p> The diffusivity of nitrogen in alpha-zirconium was determined by using transverse microhardness measurements. The diffusivity is: D = 0.15 exp (-54100/RT)cm/sec^2 for the temperature range of 750°- l000°C. </p> <p> The influence of oxygen-nitrogen atmospheres on the scaling rate of alpha-zirconium at 850°C was investigated. Small additions of either gas to the other increased the sealing rate. A definite breakaway point was observed in the scaling kinetics and the time interval to the transition point varied with the relative amounts of nitrogen to oxygen. </p> <p> Scaling rates of zirconium at 850° and 950°C in the oxygen-water vapor atmospheres initially obeyed to a good approximation a parabolic relationship which was followed by a much faster scaling rate. </p> / Thesis / Doctor of Philosophy (PhD)
613

A Time-Dependent Description of In-Core Gamma Heating in the McMaster Nuclear Reactor

Stoll, Kurt Jason Lorenz January 2016 (has links)
Calculating or predicting the total in-core nuclear heating is a difficult tast. Full-core models can be constructed in a Monte Carlo code, such as MCNP6 or TRIPOLI4, and will allow an analyst to calculate the prompt-gamma heating at any given in-core location; however, such codes are generally unable to track the activated or fission-product isotopes and therefore the delayed-gamma sources can't be included in such a model. Some analysts have coupled Monte Carlo transport codes to burnup codes in an effort to include delayed-gamma sources, but the solutions tend to be reactor specific, time-independent and a lot of work. New ideas are required to calculate the total time-dependent in-core nuclear heating. Within this report, two new models have been derived: the nuclear heating equation, and the coupled neutron and nuclear heating point kinetics (NHPK) equations. These models can be used to calculate the time and position-dependent in-core heating. The nuclear heating equations are generalized expressions of the nuclear heating in a volume of interest, within an arbitrary geometry; these equations use Monte Carlo tallies as coefficients and treat the geometry's scalar neutron flux within as the independent variable. The NHPK model describes the nuclear heating in a volume of interest, within a critical assembly by coupling nuclear heating to the famous neutron point kinetics equations. A SCK-CEN gamma thermometer (GT) was commissioned in a materials testing reactor (MTR), the McMaster Nuclear Reactor (MNR), to measure the dynamic in-core nuclear heating in two locations. The nuclear heating equation was used to calculate self-heating of the SCK-CEN GT by neutron capture reactions. This calculation used CapGam and IAEA PGAA prompt-gamma emission data; delayed-particle emission data from NuDat 2.6 was also employed. Analysis of the GT's signal resulted in a quantitative description of the dynamic delayed-gamma heating in MNR, and provided the coefficients for the NHPK model. The NHPK model is capable of reproducing the measured time-dependent nuclear heating, and therefore should also be capable of predicting in-core nuclear heating as a function of reactor power. / Dissertation / Doctor of Philosophy (PhD)
614

FUNDAMENTAL STUDY OF DECARBURIZATION BEHAVIOR OF LIQUID Fe-C DROPLETS IN OXIDIZING SLAG

Biswas, Jayasree January 2021 (has links)
This is a thesis includes both experimental and modeling studies for high temperature slag/metal reaction system. / Bloating of metal droplets in emulsion is an important phenomenon in BOF steelmaking in controlling the kinetics of refining. This bloating controls the kinetics by mainly increasing the residence time (from ~¼th of a second to ~10-15 seconds) of the droplets in emulsion and the slag/metal surface (~5-6 times) area. The bloating behavior is determined by the decarburization kinetics. This work aims to develop fundamental understanding of the bloating phenomena through series of experiments and mathematical modeling to explore various factors affecting the kinetics of decarburization. An experimental study on varying the droplet carbon concentration, slag FeO concentration and basicity evidenced mixed controlled kinetics including transport of oxygen in the slag, interfacial (slag/metal) chemical reaction, nucleation and growth of CO bubbles. A mathematical model including these kinetic steps was developed. The model was able to demonstrate the partitioning of oxygen at the slag/metal interface into external (at the slag/metal interface) and internal (within droplet) decarburization in presence of the surface-active element sulfur. The model was developed using a single data set and validated for a wide range of experimental conditions. The model showed excellent agreement with experimental data for most of the reaction period but failed to predict a premature shutdown for droplets reacting with low conductivity slag. In order to understand this discrepancy, the slag ionic and electronic conductivity were varied which showed a premature shutdown of decarburization reaction with low conductivity slag and continuation of the reaction to the thermodynamic limit with high conductivity slag. A mechanism of generation of local electric field by accumulation of charge at the slag/metal interface was proposed to explain the premature shutdown of the reaction for low basicity slags. In all experiments with low conductivity slag sulfur was observed to delay the onset of internal decarburization. However, this effect was diminished or disappeared completely with high conductivity slag. This observation motivated additional experiments to study the competitive adsorption of oxygen and sulfur at the slag/metal interface both through experiments and modelling. It was shown that for low conductivity slag, sulfur poisoning inhibited reaction at the surface whereas for the high conductivity slags the faster transport of oxygen allowed oxygen to compete with sulfur for adsorption sites creating pathways for oxygen into the droplet. By including the possibility of competitive adsorption in the model it was possible to predict the behavior of high sulfur droplets in conductivity slags where the only modification to the model was to change the mass transfer coefficient as appropriate to the higher conductivity. Extension of this study to include silicon in the droplet showed significant effect on decarburization both in delaying bloating as well as increasing peak rate of decarburization. / Thesis / Candidate in Philosophy
615

Development of a heterogeneously catalyzed chemical process to produce biodiesel

Singh, Alok Kumar 03 May 2008 (has links)
It is well known fact that energy is a big issue for this world and substantial amount of research is going on worldwide for alternative fuels that are environmentally friendly, especially because of the fact that crude petroleum reserves are dwindling. Also, research on alternative fuels is essential for increased energy security. Biodiesel is a renewable, biodegradable, and nontoxic fuel. At present, when homogeneous catalysts are used, biodiesel is primarily produced in batch reactors in which the required energy is provided by heating accompanied by mechanical mixing. Alternatively, ultrasonic processing could be an effective way to attain required mixing while providing the necessary activation energy. We found that, using ultrasonication, a biodiesel yield in excess of 99% can be achieved in a short time duration of five minutes or less in comparison to one hour or more using conventional batch reactor systems. Homogeneous acid or base catalysts dissolve fully in the glycerol layer and partially in the fatty acid methyl esters (biodiesel) layer during the triglyceride transesterification process. Heterogeneous (solid) catalysts, on the other hand, can prevent catalyst contamination making product separation much easier. In the present work, one of the objective was to determine the transesterification kinetics of different pure metal oxide catalysts, mixed metal oxide catalysts, layered double hydroxides with their corresponding yield is presented. It was found that heterogeneous catalysts require much higher temperatures (215oC) and pressures to achieve acceptable conversion levels compared to homogeneous catalysts. For some of the mixed metal oxide solid catalysts a conversion level of 99% was observed. The present study also deals with the catalyst characterization on the basis of their acidity/ basicity and site strength, and surface area. Finally the deoxygenation of fatty acid methyl esters was carried out in order to upgrade the biodiesel. As a result, several aliphatic and aromatic hydrocarbons were detected in the mass spectrometric studies. This dissertation consists of five chapters. Chapter I presents a brief introduction to biodiesel production and the objectives of the study. Chapter II contains a review of literature. Chapter III contains the materials and methods used in this study. In this chapter different principles and theories will be mentioned with regard to the use of ultrasonication towards biodiesel production, reaction kinetics of biodiesel production, catalyst characterizations and thermodynamic analysis of deoxygenation of fatty acid methyl esters. Chapter IV presents the results and its discussions. Finally, Chapter V discusses the summary and conclusions of the study.
616

Detection of reactive intermediates from quinol esters and O-aryl-N-methanesulfonyl hydroxylamine

Wang, Yue-Ting 01 August 2009 (has links)
No description available.
617

Sustainable Polycarbonate Nanocomposites: Impact of Production Method and Composition

Zhang, Wei January 2014 (has links)
No description available.
618

Master Equation Modeling of a Nanosecond Pulsed Discharge in Nitrogen in Pin-to-Pin Geometry

Eckert, Zakari Sebastian 22 May 2015 (has links)
No description available.
619

DISINFECTION KINETICS FOR A CHLORINE-RESISTANT FRACTION OF INDIGENOUS HETEROTROPHIC PLATE COUNT BACTERIA IN OHIO RIVER WATER

Owens, James Hudson 15 September 2002 (has links)
No description available.
620

Novel Inorganic Sorbent for High Temperature Carbon Dioxide Separation

Xiong, Rentian 04 September 2003 (has links)
No description available.

Page generated in 0.0478 seconds