• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elektrofyziologická charakterizace membránového kanálu Kir2.1 / Electrophysiological characterization of Kir2.1 membrane channel

Měsíčková, Klára January 2018 (has links)
The topic of this thesis is electrophysiological characterization of Kir2.1 membrane channel. Inward rectifier potassium channel Kir2.1 is located in muscular, heart and nerve cells and its dysfunction causes various diseases. Practical part of this stage is focused on cultivation of the HEK293T cell line that is used to transfection of the plasmid Kir2.1 and subsequent measurement of the ionic current through the electrophysiological method patch-clamp in whole-cell mode.
2

Modélisation du syndrome d'Andersen dans les cellules souches pluripotentes induites : implication du canal potassique Kir2.1 dans la morphogenèse osseuse / Modeling Andersen's syndrome using induced Pluripotent Stem cells : implication of Kir2.1 potassium channel in bone morphogenesis

Pini, Jonathan 13 July 2016 (has links)
Le syndrome d’Andersen est une maladie rare et associée à la perte de fonction du canal potassique Kir2.1. Afin d’étudier sa physiopathologie, nous avons généré et caractérisé des cellules souches pluripotentes induites (iPS) contrôle et Andersen. Nous avons ensuite différencié ces cellules iPS en cellules souches mésenchymateuse (MSC). Les cellules MSC de patients présentent une capacité de différenciation en ostéoblastes et en chondrocytes diminuée par rapport aux cellules contrôle. En effet, la production de matrice extracellulaire et l'expression des master gènes des différenciations osseuses et cartilagineuses, est réduite chez les patients. Ces travaux de thèse montrent que le canal Kir2.1 est essentiel au développement osseux. Les défauts de différentiation observés pourraient expliquer les dysmorphies associées avec le syndrome d’Andersen. / Andersen's syndrome is a rare disorder associated with a Kir2.1 potassium channel loss of fuction. To study the pathophysiology, we have generated and characterized induced Pluripotent Stem cells (iPS) from control and patient cells. We have then differentiated those iPS cells into mesenchymal stem cells (MSC). Patient's MSc have a lower osteoblastic and chondrogenic differnciation ability compared to control cells. Indeed, extracellular matrix production and master gene expression of osteoblastic and chondrogenic differenciation are reduced in patient’s cells. Alltogether, these results shown that Kir2.1 channel is required for bone developement. The differenciation defects saw in patient cells could explain the Andersen's syndrome associated dysmorphies.
3

Direct regulation of inward rectifier K+ (Kir) channel by endocannabinoids

Ahrari, Ameneh 06 1900 (has links)
This thesis represents the culmination of the main project I have undertaken during my master's program. It is important to note that additional data collection and analysis were conducted by intern students under my supervision, which will be integrated into a forthcoming manuscript where I will be credited as the first co-author. Due to space and focus limitations of this thesis, these additional findings have not been included here. / La famille des canaux potassiques à rectification entrante (Kir), exprimée de manière ubiquitaire, repolarise et maintient le gradient de tension à travers les membranes des cellules excitables et non-excitables. Les canaux Kir sont fortement régulés par divers lipides membranaires, tels que les phosphoinositides, les phospholipides anioniques secondaires, le cholestérol, le Coenzyme A (CoA) à longue chaîne et l'acide arachidonique. Kir2.1 est fortement exprimé dans le tissu musculaire strié des cellules cardiaques auriculaires et ventriculaires. Il joue un rôle essentiel dans la régulation du potentiel de membrane au repos et de la contraction des cellules musculaires cardiaques et lisses en générant le courant K+ à rectification entrante (IK1). (IK1). Les mutations de Kir2.1 avec perte de fonction sont à l'origine du syndrome d'Andersen-Tawil (ATS). Par conséquent, l'altération de la fonction de Kir2.1 est un déterminant essentiel au bon fonctionnement du cœur. Les endocannabinoïdes sont une classe spéciale de lipides naturellement exprimés dans une variété de cellules, y compris les cellules cardiaques, neuronales et immunitaires. Le système endocannabinoïde, y compris les récepteurs cannabinoïdes (CBR), agit comme un système de réponse au stress qui s'active. Des études menées chez l'animal et chez l'homme suggèrent que la modulation pharmacologique de ce système pourrait représenter une nouvelle approche thérapeutique. Cependant, ces dernières années, il est devenu clair que si les endocannabinoïdes peuvent déclencher des changements de signalisation en aval par l'intermédiaire des CBR, ils peuvent également interagir directement avec les canaux ioniques indépendamment des CBR pour moduler la fonction cellulaire. Dans cette étude, nous avons utilisé la technique de double électrode en voltage imposé pour examiner les effets d'un panel d'endocannabinoïdes sur la fonction de Kir2.1. Nous avons montré qu'un sous-ensemble d'endocannabinoïdes, mais pas tous, peut réguler la fonction de Kir2.1 à des degrés divers, indépendamment des CBR. Nous avons également démontré que les endocannabinoïdes peuvent également réguler les protéines mutées menant à l'ATS (G144S et V302M). Nous avons également observé que l'effet des endocannabinoïdes n'est pas conservé parmi les membres de la famille Kir, avec des différences observées entre les canaux Kir2.1, Kir4.1 et Kir7.1. Ces résultats pourraient avoir des implications plus larges pour les fonctions des cellules cardiaques, neuronales et immunitaires. Mots clés : Kir2.1, Endocannabinoïdes, LQT7, Rectification entrante, G144S, Kir7.1, Kir4.1 / The ubiquitously expressed family of inward rectifier potassium (Kir) channels repolarizes and maintains the voltage gradient across excitable and non-excitable cell membranes. Kir channels are highly regulated by various membrane lipids, such as phosphoinositides, secondary anionic phospholipids, cholesterol, long chain acyl- Coenzyme A (CoA), and arachidonic acid. Kir2.1 is highly expressed in striated muscle tissue of atrial and ventricular heart cells. It is critically involved in regulating the resting membrane potential and contraction of cardiac and smooth muscle cells through the generation of the current IK1. Loss-of-function mutations in Kir2.1 cause Andersen-Tawil syndrome (ATS). Therefore, altered Kir2.1 function is a critical determinant of proper heart function. Endocannabinoids are a special class of lipids that are naturally expressed in a variety of cells, including cardiac, neuronal, and immune cells. The endocannabinoid system, including cannabinoid receptors (CBRs), acts as a stress response system that is activated. Studies in both animals and humans suggest that pharmacological modulation of this system might represent a novel approach to treatment. However, in recent years, it is becoming clear that while endocannabinoids can trigger downstream signaling changes through CBRs, they can also directly interact with ion channels independently of CBRs to modulate cellular function. In this study, we used the electrophysiology technique called two-electrode-voltage-clamp (TEVC) in combination with mutagenesis studies to examine the effects of a panel of endocannabinoids on the function of Kir2.1. We showed that a subset of endocannabinoids, but not all, can regulate the Kir2.1 function to varying degrees, independent of CBRs. We also demonstrated that endocannabinoids can also regulate mutants linked with ATS (G144S and V302M). We also observed that the effect of endocannabinoids is not conserved among Kir family members, with differences observed between Kir2.1, Kir4.1 and Kir7.1 channels. These findings could have broader implications for cardiac, neuronal, and immune cell functions. Key words: Kir2.1, Endocannabinoids, LQT7, Inward rectification, G144S, Kir7.1, Kir4.1
4

Chemogenetic modulation of fMRI connectivity

Rocchi, Federico 01 April 2022 (has links)
Resting-state fMRI (rsfMRI) has been widely used to map intrinsic brain network organization of the human brain both in health and in pathological conditions. However, the neural underpinnings and dynamic rules governing brain-wide rsfMRI coupling remain unclear. Filling this knowledge gap is of crucial importance, given our current inability to decode and reverse-engineer clinical signatures of aberrant connectivity into interpretable neurophysiological events that can help understand or diagnose brain disorders. Toward this goal, here we combined chemogenetics, rsfMRI, and in vivo electrophysiology in the mouse to investigate how regional manipulations of brain activity (i.e. neural inhibition, or excitation) causally contribute to whole-brain fMRI network organization. In a first set of proof of concept investigations, we empirically probed the widely held notion that neural inhibition of a cortical node would result in reduced fMRI coupling of the silenced area and its long-range terminals. Surprisingly, we found that chronic inhibition of the mouse medial prefrontal cortex (PFC) via viral overexpression of a potassium channel paradoxically increased fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Notably, acute chemogenetic inhibition of the PFC reproduced analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we found that chemogenetic inhibition of the PFC enhances low frequency (0.1 - 4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes, with important implications for neural modeling and interpretation of fMRI overconnectivity in brain disorders. Importantly, our observation that neural inhibition of the PFC results in fMRI overconnectivity allowed us to predict that neural activation of the same area might produce opposite results, i.e. fMRI underconnectivity and neural desynchronization. To test this hypothesis, we used chemogenetics to increase local excitatory-inhibitory (E/I) balance in the PFC. As predicted, chemogenetic stimulation of CamkII-expressing neurons, or inhibition of fast-spiking parvalbumin-expressing neurons, produced similar rsfMRI signatures of rsfMRI underconnectivity. Both manipulations produced analogous electrophysiological signatures characterized by increased firing activity and a robust LFP power shift towards higher (i.e. γ) frequencies, effectively reversing the corresponding neural signature observed in DREADD inhibition studies. Importantly, the same E/I affecting perturbations were also associated with socio-communicative deficits in behaving mice hence underscoring the behavioral relevance of the employed manipulations. These results show that excitatory/inhibitory balance critically biases brain-wide fMRI coupling, pointing at a possible unifying mechanistic link between E/I imbalance and rsfMRI connectivity disruption in developmental disorders. More broadly, these investigations reveal a set of fundamental rules linking regional brain activity to macroscale functional connectivity, offering opportunities to physiologically interpret rsfMRI signatures of functional dysconnectivity in human brain disorders.
5

Molecular basis of native inward rectifier currents : role of Kir2 subunits

Schram, Gernot January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
6

Etude de l'implication des cellules microgliales et de l'α-synucleine dans la maladie neurodégénérative de Parkinson / Microglia and α-synuclein implication in Parkinson's disease

Moussaud, Simon 25 February 2011 (has links)
Les maladies neurodégénératives liées à l’âge, telle celle de Parkinson, sont un problème majeur de santé publique. Cependant, la maladie de Parkinson reste incurable et les traitements sont très limités. En effet, les causes de la maladie restent encore mal comprises et la recherche se concentre sur ses mécanismes moléculaires. Dans cette étude, nous nous sommes intéressés à deux phénomènes anormaux se produisant dans la maladie de Parkinson : l’agrégation de l’α-synucléine et l’activation des cellules microgliales. Pour étudier la polymérisation de l’α-synucléine, nous avons établi de nouvelles méthodes permettant la production in vitro de différents types d’oligomères d’α-synucléine. Grâce à des méthodes biophysiques de pointe, nous avons caractérisé ces différents oligomères à l’échelle moléculaire. Puis nous avons étudié leurs effets toxiques sur les neurones. Ensuite, nous nous sommes intéressés à l’activation des microglies et en particulier à leurs canaux potassiques et aux changements liés au vieillissement. Nous avons identifié les canaux Kv1.3 et Kir2.1 et montré qu’ils étaient impliqués dans l’activation des microglies. En parallèle, nous avons établi une méthode originale qui permet l’isolation et la culture de microglies primaires issues de cerveaux adultes. En comparaison à celles de nouveaux-nés, les microglies adultes montrent des différences subtiles mais cruciales qui soutiennent l’hypothèse de changements liés au vieillissement. Globalement, nos résultats suggèrent qu’il est possible de développer de nouvelles approches thérapeutiques contre la maladie de Parkinson en modulant l’action des microglies ou en bloquant l’oligomérisation de l’ α-synucléine. / Age-related neurodegenerative disorders like Parkinson’s disease take an enormous toll on individuals and on society. Despite extensive efforts, Parkinson’s disease remains incurable and only very limited treatments exist. Indeed, Parkinson’s pathogenesis is still not clear and research on its molecular mechanisms is ongoing. In this study, we focused our interest on two abnormal events occurring in Parkinson’s patients, namely α-synuclein aggregation and microglial activation. We first investigated α-synuclein and its abnormal polymerisation. For this purpose, we developed novel methods, which allowed the in vitro production of different types of α-synuclein oligomers. Using highly sensitive biophysical methods, we characterised these different oligomers at a single-particle level. Then, we tested their biological effects on neurons. Afterwards, we studied microglial activation. We concentrated our efforts on two axes, namely age-related changes in microglial function and K+ channels in microglia. We showed that Kv1.3 and Kir2.1 K+ channels are involved in microglial activation. In parallel, we developed a new approach, which allows the effective isolation and culture of primary microglia from adult mouse brains. Adult primary microglia presented subtle but crucial differences in comparison to microglia from neo-natal mice, confirming the hypothesis of age-related changes of microglia. Taken together, our results support the hypotheses that microglial modulation or inhibition of α-synuclein oligomerisation are possible therapeutic strategies against Parkinson's disease.
7

Etude de l'implication des cellules microgliales et de l'α-synucleine dans la maladie neurodégénérative de Parkinson

Moussaud, Simon 25 February 2011 (has links) (PDF)
Les maladies neurodégénératives liées à l'âge, telle celle de Parkinson, sont un problème majeur de santé publique. Cependant, la maladie de Parkinson reste incurable et les traitements sont très limités. En effet, les causes de la maladie restent encore mal comprises et la recherche se concentre sur ses mécanismes moléculaires. Dans cette étude, nous nous sommes intéressés à deux phénomènes anormaux se produisant dans la maladie de Parkinson : l'agrégation de l'α-synucléine et l'activation des cellules microgliales. Pour étudier la polymérisation de l'α-synucléine, nous avons établi de nouvelles méthodes permettant la production in vitro de différents types d'oligomères d'α-synucléine. Grâce à des méthodes biophysiques de pointe, nous avons caractérisé ces différents oligomères à l'échelle moléculaire. Puis nous avons étudié leurs effets toxiques sur les neurones. Ensuite, nous nous sommes intéressés à l'activation des microglies et en particulier à leurs canaux potassiques et aux changements liés au vieillissement. Nous avons identifié les canaux Kv1.3 et Kir2.1 et montré qu'ils étaient impliqués dans l'activation des microglies. En parallèle, nous avons établi une méthode originale qui permet l'isolation et la culture de microglies primaires issues de cerveaux adultes. En comparaison à celles de nouveaux-nés, les microglies adultes montrent des différences subtiles mais cruciales qui soutiennent l'hypothèse de changements liés au vieillissement. Globalement, nos résultats suggèrent qu'il est possible de développer de nouvelles approches thérapeutiques contre la maladie de Parkinson en modulant l'action des microglies ou en bloquant l'oligomérisation de l' α-synucléine.

Page generated in 0.025 seconds