Spelling suggestions: "subject:"kiruna type"" "subject:"kiruna mype""
1 |
GEOCHEMICAL UNDERSTANDING OF VANADIUM IN MALMBERGET ORES (KIRUNA TYPE), NORTHERN SWEDENKambai, Kabelo January 2021 (has links)
The Norrbotten region is an important Swedish mining district with occurrence of several economic deposits and sub-economic deposits of apatite iron ores (Kiruna Type) and epigenetic Cu-Au ores. The apatite iron ores include the large Malmberget deposit mined by LKAB company as one of their world class underground mines. The Malmberget ores are hosted by a Paleoproterozoic unit of metavolcanics and metasedimentary rocks intruded by multiple plutonic rocks varying in composition. The rocks at Malmberget are overprinted by intense widespread hydrothermal alteration, metamorphism and deformation. The Malmberget iron deposit is thought to originally be one continuous lens that segmented into more than 20 different orebodies during the regional metamorphism and deformation. The Malmberget deposit is characterized by different orebodies that shows different textures and chemical variations. The iron ores at Malmberget are mainly consisting of magnetite and hematite. Apatite iron ores of the Kiruna type have raised divergent opinions regarding whether this type of deposits are magmatic or hydrothermal in origin. However, trace element analysis have been used for studies that yield information about ore-forming fluids and mineralizing processes. This paper aims at understanding the vanadium behaviour and distribution in the Malmberget ores as well as studying textural and mineralogical control of vanadium in the iron ores. Learnings from this paper aids in understanding the controls and distribution of vanadium and increasing knowledge regarding genetic aspects of the Malmberget deposit. To achieve this, detailed core logging, optical microscopy, lithogeochemistry and scanning electron microprobe analyses were utilized to figure out why the vanadium content is high in some places and low in other parts of the deposit. Textural data of both magnetite and hematite ores show that the Malmberget ores can be characterized as massive ore and breccia type. The ores in the western part of the deposit are dominated by metamorphic and oxidation textures, including martitisation textures and triple junction textures. The ores in the eastern part are mainly massive magnetite textures with apatite and amphibole as the main gauge minerals. Metamorphic recrystallization and oxidation of the ores resulted in vanadium redistribution and chemical changes of both hematite and magnetite. Vanadium is high in both magnetite and hematite ore and low in the silicate host rocks. The eastern ore bodies of the deposit are found to be higher in vanadium content compared to those on the western side. Vanadium is high in magnetite ore sections but in magnetite-hematite grain pairs vanadium is redistributed from the magnetite grain to the adjacent hematite grain during metamorphic oxidation and recrystallization of magnetite. The results from this project suggest that a better understanding of what controls the distribution of vanadium in the ores needs more investigations regarding element partition under different geochemical conditions. There are also uncertainties regarding the initial source of vanadium and its primary distribution in different minerals and ore types and later redistributions. The origin of hematite in the ores and the stratigraphic position of the ores are other aspects that needs further studies to get a deeper understanding of the behaviour of vanadium in the Malmberget deposit.
|
2 |
EBSD Investigation of High-Temperature Magnetite from Apatite-Iron-Oxide Deposits: Implications for the Formation of Giant Kiruna-Type Deposits / EBSD-undersökning av högtemperatur magnetit från apatit-järnmalmsfyndigheter: Implikationer för bildningen av gigantiska fyndigheter av Kiruna-typHenriksson, Jens January 2022 (has links)
European iron production is to a large extent dependant on massive Kiruna type apatite-iron ore deposits. In this contribution, high-temperature magnetite samples from apatite-iron-oxide deposits are investigated by means of Electron Backscattered Diffraction. However, the origin of Kiruna-type deposits is still unresolved. Although magmatic processes are likely, it is not clear how small-scale processes can form giant Kiruna-type deposits. The sample suite consists of magnetite samples from six global apatite-iron-oxide deposits: the famous Kiirunavaara deposit and the Malmberget deposit, both located in northern Sweden, the Grängesberg deposit in south-central Sweden, the iconic El Laco deposit in north-eastern Chile, the Bafq deposit in central Iran, and the Varena deposit in south Lithuania. Fe-O systematics has been conducted to complement existing δ18O and δ56Fe isotope data and ensure magmatic origin of the samples from the Malmberget deposit (n=6) and the Varena deposit (n=2). This is the first effort to characterise magnetite samples from apatite-iron-oxide deposits utilising EBSD. In total, twelve EBSD maps have been produced. Evaluation of the EBSD data have been performed to quantify the preferred orientation of the magnetite crystals. Four deposits, with Kiirunvaara being the prime example, shows no preferred alignment of the magnetite crystals. Whereas the El Laco samples exhibits a strong preferred alignment of {111}. The EBSD data from magnetite samples in equilibrium with a magmatic source indicate that apatite-iron-oxide deposits are formed in both intrusive and extrusive environment and that magmatic crystal accumulation is a key process in aggregating magnetite to form large and even giant Kiruna-type deposits. / Europeisk järnmalmsproduktion är i stor utsträckning beroende av massiva apatit-järnmalmsfyndigheter av Kiruna-typ. I det här arbetet, undersöks magnetitprover av hög-temperaturs ursprung från olika apatit-järnmalmsfyndigheter med Elektron Bakåtspridande Diffraktion. Bildningsmekanismen av apatit-järnmalmsfyndigheter av Kiruna-typ är än idag oklar. Bevisen indikerar magmatiska bildningsprocesser, det är dock fortfarande oklart hur småskaliga magmatiska processer bildar gigantiska apatit-järnmalmsfyndigheter av Kiruna-typ. Provserien består av magnetitprover från sex globala apatit-järnmalmsfyndigheter: den världsberömda Kiirunavaara fyndigheten och Malmberget fyndigheten, båda lokaliserade i Norrbotten, Sverige, Grängesberg fyndigheten i Bergslagen, Sverige, den ikoniska El Laco fyndigheten i nordöstra Chile, Bafq fyndigheten i centrala Iran, och Varena fyndigheten i södra Litauen. För att fastställa ett magmatiskt ursprung och komplettera befintlig δ18O och δ56Fe isotopdata har Fe-O-systematik utförts på magnetitproverna från Malmberget (n=6) och Varena (n=2). Det här är den första dokumenterade EBSD-undersökningen av magnetitprover från apatit-järnmalmsfyndigheter. Totalt tolv EBSD-kartor har producerats. Utvärdering av EBSD-data har utförts för att kvantifiera den föredragna riktningen på magnetitkristallerna. I fyra fyndigheter, med Kiirunvaara som typexempel, uppvisar magnetitkristallerna ingen föredragen riktning, medan magnetitproverna från El Laco uppvisar en tydlig föredragen riktning längs {111}. EBSD-data från magnetitprover i jämnvikt med en magmatiskkälla påvisar att apatit-järnmalmer bildas i både intrusiva miljöer och extrusiva miljöer och att magmatisk ackumulation är en nyckelprocess för att aggregera magnetitkristaller och bilda stora till gigantiska apatit-järnmalmsfyndigheter av Kiruna-typ.
|
3 |
Oxygen and iron isotope systematics of the Grängesberg Mining District (GMD), Central SwedenWeis, Franz January 2013 (has links)
Iron is the most important metal for modern industry and Sweden is the number one iron producer in Europe. The main sources for iron ore in Sweden are the apatite-iron oxide deposits of the "Kiruna-type", named after the iconic Kiruna ore deposit in Northern Sweden. The genesis of this ore type is, however, not fully understood and various schools of thought exist, being broadly divided into "ortho-magmatic" versus the "hydrothermal replacement" approaches. This study focuses on the origin of apatite-iron oxide ore of the Grängesberg Mining District (GMD) in Central Sweden, one of the largest iron reserves in Sweden, employing oxygen and iron isotope analyses on massive, vein and disseminated GMD magnetite, quartz and meta-volcanic host rocks. As a reference, oxygen and iron isotopes of magnetites from other Swedish and international iron ores as well as from various international volcanic materials were also analysed. These additional samples included both "ortho-magmatic" and "hydrothermal" magnetites and thus represent a basis for a comparative analysis with the GMD ore. The combined data and the derived temperatures support a scenario that is consistent with the GMD apatite-iron oxides having originated dominantly (ca. 87 %) through ortho-magmatic processes with magnetite crystallisation from oxide-rich intermediate magmas and magmatic fluids at temperatures of 600 °C to 900 °C. A minor portion of the GMD magnetites (ca. 13 %), exclusively made up of vein and disseminated ore types, is in equilibrium with a high-δ18O and low-δ56Fe hydrothermal fluid at temperatures below 400 °C, indicating the existence of a hydrothermal system associated with the GMD volcano.
|
Page generated in 0.0417 seconds