Spelling suggestions: "subject:"max"" "subject:"vmax""
1 |
Influence du vieillissement sur la résistance à la fissuration par fatigue à haute température d'alliages de titane pour mâts-réacteurs / Effect of Long Term Aging on the High Temperature Fatigue Crack Growth Resistance of Titanium alloys for Engine PylonsSasaki, Layla 27 September 2018 (has links)
La conception de moteurs aéronautiques plus performants soumet les alliages de titane constitutifs des mâts-réacteurs à des contraintes thermiques et mécaniques plus sévères. Ces matériaux doivent d’une part être qualifiés en termes de tolérance aux dommages. D’autre part, l’exposition prolongée de ces alliages de titane à des températures élevées en service pose la question de leur vieillissement métallurgique. Le dimensionnement et la maintenance de telles aérostructures doit ainsi prendre en compte l’ensemble de ces deux problématiques cruciales.Dans ces travaux, le comportement cyclique ainsi que la résistance à la fissuration par fatigue d’alliages de titane de différentes nuances (TA6V, Ti 6242 et Ti 17) et de différentes microstructures, ont été étudiés en fonction du degré de vieillissement. L’effet du vieillissement se traduit essentiellement par une augmentation des vitesses de propagation à forte valeur du facteur d’intensité de contrainte, à température ambiante. Dans un second temps, une démarche de caractérisation poussée de ce phénomène mettant en œuvre des sollicitations variées, à différentes échelles et associées à des analyses fractographiques a été appliquée. Ceci a permis de proposer un scénario d’endommagement avant et après vieillissement pour l’alliage le plus affecté par l’exposition en température, le Ti 17. Ce scénario montre après vieillissement l’apparition d’un mode d’endommagement « statique » en lien avec un processus de rupture puis décohésion intralamellaire, sans modification notable du comportement cyclique. Enfin, une approche d’équivalence temps-température est proposée pour décrire la cinétique de dégradation des propriétés mécaniques consécutive au vieillissement. / The conception of more efficient aircraft engines induces increased stress and temperature levels on the titanium alloys constitutive of the engine pylon. On the one hand, these materials have to be qualified in terms of damage tolerance. On the other hand, the long term high temperature exposure of these titanium alloys gives also rise to the question of thermal aging and metallurgical stability. Hence, the dimensioning as well as the maintenance of such aerostructures need to be considered in the light of both these critical issues.In the present work, the cyclic behavior as well as the fatigue crack resistance of different titanium alloys (TA6V, Ti 6242 et Ti 17), with various microstructures were studied after different aging conditions. Aging induces mainly an increase in crack growth rates at high values of the stress intensity factor, at room temperature. Subsequently, a thorough characterization procedure of this phenomenon was undertaken,including various types of loadings, at different scales and associated with fractographic analyses. The results allowed to suggest a damage scenario before and after aging, in the case of the alloy most affected by aging: theTi 17 alloy. This scenario shows the occurrence of a « static » mode of failure, which is linked to a damage process associated with intralamellar fracture and decohesion, without noticeable changes in the cyclic behavior. Finally, a time-temperature equivalency approach was developed to describe the kinetics of degradation of the mechanical properties induced by aging.
|
2 |
Experimental Investigations On Near-Threshold Events On Fatigue Crack GrowthYamada, Yoshinori 11 December 2009 (has links)
In the past, the disagreement of near-threshold fatigue-crack growth (FCG) rate data generated from constant Kmax tests, high load ratio (minimum to maximum load) constant R tests, and ΔKeff based data was a mysterious issue. Because of the disagreement, a variety of test or analysis methods were created to correlate FCG rate data. It was suspected that the ASTM threshold test method using load reduction was inducing remote crack closure due to plastically deformed material, which caused elevated thresholds and slower rates than steady-state behavior. The first goal of this study was the development of a test method to eliminate remote closure during threshold testing. In order to avoid/minimize remote closure effect, compression-precracking methods were used to initiate a crack from a starter notch on compact specimens. Two materials with different fatigue crack surface profiles (flat or very rough) were tested and the results generated from the conventional ASTM precracking method and the compression-precracking test method were compared. In order to understand the disagreement of near-threshold data, crack-opening load measurements were performed from locally (near crack tip) installed strain gages instead of the remote gage (i.e., back face gage). Some careful specimen preparations were performed to avoid out-of-plane bending, to maintain straight crack fronts, and to ensure testing system linearity. It was known that remote gages, such as crack-mouth- opening-displacement-gages were insensitive to measuring load-strain records near threshold. By using local gages, the crack closure effects were clearly observed even in high load ratio (R) tests, like or higher than R = 0.7, and constant Kmax tests, which were believed to be crack closure free. By measuring load-reduced-strain records from local gages, crack-opening loads were able to correlate FCG rate data and showed that ΔKeff-rate data was unique for a wide variety of materials. By comparing (ΔKeff)th values, it may provide reasonable guidance for the material resistance against FCG. Because of “high R crack closure”, some theories considered in the past may need to be reconsidered. First, constant Kmax tests are not entirely crack-closure free. Second, there is no critical load ratio, Rc, to indicate the transition from crack-closure affected to crack-closure free data, and Kmax effects that appear in ΔKth-Kmax relations. Research has shown that the three dominate crack-closure mechanisms (plasticity-, roughness- and debris-induced crack closure) FCG rate behavior in the threshold regime from low to high load ratios.
|
3 |
The Effects of Load Ratio on Threshold Fatigue Crack Growth of Aluminum AlloysNewman, John Andrew 10 November 2000 (has links)
The integrity of nearly all engineering structures are threatened by the presence of cracks. Structural failure occurs if a crack larger than a critical size exists. Although most well designed structures initially contain no critical cracks, subcritical cracks can grow to failure under fatigue loading, called fatigue crack growth (FCG). Because it is impossible or impractical to prevent subcritical crack growth in most applications, a damage tolerant design philosophy was developed for crack sensitive structures. Design engineers have taken advantage of the FCG threshold concept to design for long fatigue lives. FCG threshold (DKth) is a value of DK (crack-tip loading), below which no significant FCG occurs. Cracks are tolerated if DK is less than DKth. However, FCG threshold is not constant. Many variables influence DKth including microstructure, environment, and load ratio. The current research focuses on load ratio effects on DKth and threshold FCG. Two categories of load ratio effects are studied here: extrinsic and intrinsic. Extrinsic load ratio effects operate in the crack wake and include fatigue crack closure mechanisms. Intrinsic load ratio effects operate in the crack-tip process zone and include microcracking and void production. To gain a better understanding of threshold FCG load ratio effects (1) a fatigue crack closure model is developed to consider the most likely closure mechanisms at threshold, simultaneously, and (2) intrinsic load ratio mechanisms are identified and modeled.
An analytical fatigue crack closure model is developed that includes the three closure mechanisms considered most important at threshold (PICC, RICC, and OICC). Crack meandering and a limited amount of mixed-mode loading are also considered. The rough crack geometry, approximated as a two-dimensional sawtooth wave, results in a mixed-mode crack-tip stress state. Dislocation and continuum mechanics concepts are used to determine mixed-mode crack face displacements. Plasticity induced crack closure is included by modifying an existing analytical model, and an oxide layer in the crack mouth is modeled as a uniform layer. Finite element results were used to verify the analytical solutions for crack-tip stress intensity factor and crack face displacements. These results indicate that closure for rough cracks can occur at two locations: (1) at the crack-tip, and (2) at the asperity nearest the crack-tip. Both tip contact and asperity contact must be considered for rough cracks. Tip contact is more likely for high Kmax levels, thick oxide layers, and shallow asperity angles, a. Model results indicate that closure mechanisms combine in a synergistic manner. That is, when multiple closure mechanisms are active, the total closure level is greater than the sum of individual mechanisms acting alone. To better understand fatigue crack closure where multiple closure mechanisms are active (i.e. FCG threshold), these interactions must be considered. Model results are well supported by experimental data over a wide range of DK, including FCG threshold.
Closure-free load ratio effects were studied for aluminum alloys 2024, 7050, and 8009. Alloys 7050 and 8009 were selected because load ratio effects at FCG threshold are not entirely explained by fatigue crack closure. It is believed that closure-free load ratio mechanisms occur in these alloys. Aluminum alloy 2024 was selected for study because it is relatively well behaved, meandering most load ratio effects are explained by fatigue crack closure. A series of constant Kmax threshold tests on aluminum alloys were conducted to eliminate fatigue crack closure at threshold. Even in the absence of fatigue crack closure load ratio (Kmax) effects persist, and are correlated with increased crack-tip damage (i.e. voids) seen on the fatigue crack surfaces. Accelerated FCG was observed during constant Kmax threshold testing of 8009 aluminum. A distinct transition is seen the FCG data and is correlated with a dramatic increase in void production seen along the crack faces. Void production in 8009 aluminum is limited to the specimen interior (plane-strain conditions), promoting crack tunneling. At higher values of Kmax (+_ 22.0 MPaà m), where plane-stress conditions dominate, a transition to slant cracking occurs at threshold. The transition to slant cracking produces an apparent increase in FCG rate with decreasing DK. This unstable threshold behavior is related to constraint conditions. Finally, a model is developed to predict the accelerated FCG rates, at higher Kmax levels, in terms of crack-tip damage.
The effect of humidity (in laboratory air) on threshold FCG was studied to ensure that environmental effects at threshold were separated from load ratio effects. Although changes in humidity were shown to strongly affect threshold FCG rates, this influence was small for ambient humidity levels (relative humidity between 30% and 70%). Transient FCG behavior, following an abrupt change in humidity level, indicated environmental damage accumulated in the crack-tip monotonic plastic zone. Previous research implies that hydrogen (a component of water vapor) is the likely cause of this environmental damage. Analysis suggests that bulk diffusion is not a likely hydrogen transport mechanism in the crack-tip monotonic plastic zone. Rather, dislocation-assisted diffusion is presented as the likely hydrogen transport mechanism.
Finally, the (extrinsic) fatigue crack closure model and the (intrinsic) crack-tip damage model are put in the context of a comprehensive threshold model. The ultimate goal of the comprehensive threshold model is to predict fatigue lives of cyclically loaded engineering components from (small) crack nucleation, through FCG, and including failure. The models developed in this dissertation provide a basis for a more complete evaluation of threshold FCG and fatigue life prediction.
The research described in this dissertation was performed at NASA-Langley Research Center in Hampton, Virginia. Funding was provided through the NASA GSRP program (Graduate Student Researcher Program, grant number NGT-1-52174). / Ph. D.
|
Page generated in 0.0478 seconds