• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The mean stress effect on Fatigue crack propagation rate and thershold for interstitial-free steel

Zhang, Jun-Hao 09 September 2009 (has links)
none
2

Can internal and external load measures via Polar Vantage V predict training status in trained individuals? : - A prospective study during a normal and a heavy load training week.

Offerman, Jens January 2019 (has links)
Purpose To evaluate the information provided by Polar Vantage V, a new generation of heart rate monitor/watch (HRM-watch) to the user, regarding the acute:chronic load ratio (ACLR), based onthe external and internal load measures and examine the measures against psychological and physiological measures before and during a threshold test with VO2max testing. Method A five-week prospective study with results and data collected during and after four normal training weeks and during a fifth week with a very high training load. The results from HRM-watchwere then evaluated against the results from physiological and psychological tests. Eight endurance runners were recruited. Results Differences in ACLR against the differences in HRR show a R2 value of 0.77 (p<0.05). ACLR signicantly increased with an average of 0.33 from 0.93 to 1.26 (p=0.003, 95 % CI= 0.17 {0.49). Differences in ACLR against dierences in total mood disturbance (TMD) from POMS showin regression analyses a R2value of 0.67 (p=0.05). No significant difference was noted in neither resting HRV (p=0.3, 95% CI= -22.2 { 8.5) or standing HRV (p=0.15, 95% CI= - 4.15 { 20.8). Conclusion Based on the result of the present study it can be concluded that training status, well-being and present mood state can be predicted fairly good with the information from the internal and external load measurements from the Polar Vantage V. However, the power of present exploratory study was low due to a low number of included participants. Future research with greater number of participants and an improved study design is needed to verify these interesting findings.
3

Utvärdering av osäkerhet i sprickfortplantningsmodeller / Evaluation of uncertainty of crack propagation models

Tuyishimire, Gabriel January 2015 (has links)
In aerospace industry and other major mechanical industry systems, engineering components that are subjected to cyclic loads often lead to progressive crack growth that eventually results in struc-tural fracture. The damage tolerance design which is based on the assumption of pre-existed flaws in a structure is an important approach in aircraft industry since it is impossible to have flaw-free manufactured components.In this thesis work, an evaluation of crack propagation models was carried out. Fatigue crack growth threshold and fatigue crack growth rate models were evaluated. A method to present ex-perimental data available was developed to evaluate uncertainties in fatigue life models for more accurate predictions. Currently, a software that is used for predicting crack propagation life is NASGRO. The study has been made for two types of materials: a nickel-iron-based alloy (Inconel 718 forging) and titanium alloys (Ti 6-4 both forging and casting).A threshold model is in the normal case developed for each temperature. A method to model fatigue threshold (ΔKth) has been suggested by assuming temperature independence of ΔKth. In this method, a new threshold model was created by making use of an A/P (Actual/Predicted) plot so that all measured threshold values are on the conservative side of the minimum model. With this method, an understanding of fatigue threshold model was improved over the other method due to the possibilities to model ΔKth with average and minimum threshold values for each load ratio (ΔKth, R).Moreover, a method to investigate which set of parameters that best represent the crack growth behaviour has been suggested. In this method the best set of parameters were chosen to be the set of parameters giving the best fit to the available (da/dN, ΔK) points. The comparison between this method and the method with the set of parameters that give minimum scatter in the A/P values was done.Crack growth rate da/dN log curves were plotted as function of stress intensity range ΔK for R-ratio values ranging from -2 to 0.9 for the two different methods. A distinctive difference between the two methods was observed in Paris region at high temperatures (5500C-6500C) which becomes more obvious at lower R-ratios. Predicting crack propagation rate model with set of parameters giving minimum standard deviation in da/dN points was shown to be less conservative than that of parameter sets giving lowest scatter in A/P. Using both evaluation methods, da/dN versus ΔK plots of Inconel718forging were compared to da/dN (ΔK) plots for the pre-existing data at 5500C for R-ratios ranging from 0 to 0.8. An overall R-ratio influence was observed throughout for both ΔKth and da/dN.
4

Parametric Study on the Behavior of All-Bolted Single-Angle Connections in Fire

Chhetri, Jyotindra 23 August 2022 (has links)
No description available.
5

Near-threshold Fatigue of Adhesive Joints: Effect of Mode Ratio, Bond Strength and Bondline Thickness

Azari, Shahrokh 05 September 2012 (has links)
The main objective of the project was to establish a fracture-mechanics energy-based approach for the design of structural adhesive joints under cyclic loading. This required understanding how an adhesive system behaved near its fatigue threshold, and how the key factors affected this behavior in a fresh undegraded joint. The investigated factors were mode ratio (phase angle), substrate material, surface treatment and surface roughness (both affecting the bond strength), bondline thickness and load ratio. It was first required to understand how the adhesive system behaved under quasi-static loading by examining a fracture mechanics-based design approach for adhesive systems with different substrate materials and geometries. Experiments were initially performed to characterize the strength of aluminum and steel adhesive systems based on the fracture envelope, critical strain energy release rate as a function of the mode ratio. Ultimate failure loads of aluminum and steel adhesive joints, having different overlap end conditions and different geometries were then experimentally measured. These values were compared with the failure loads extracted from the fracture envelope. Considering the toughening behavior of the adhesive in the fracture mechanics analyses, a very good agreement (average of 6%) was achieved between the predictions and experiments for all types of overlap end conditions and geometries. Different fatigue threshold testing approaches, which are commonly used in the literature or suggested by the ASTM standard, were evaluated for the cracked and intact fillet joints. Based on the experimental and analytical studies, the most appropriate technique for fatigue testing and characterization of adhesive systems was suggested. Comparing the mixed-mode near-threshold behavior of different adhesive systems with the fracture behavior and fatigue mode-I and mixed-mode high crack growth rates showed the high sensitivity of the mixed-mode near-threshold fatigue to the subtle changes in the interfacial bond strength. In order to make a baseline for the design of adhesive joints under cyclic loading, similar to the previous fracture tests and following the energy-based approach, fatigue behavior was characterized as a function of the loading mode ratio for aluminum and steel adhesive joints. The effect of substrate material, surface treatment, bondline thickness, surface roughness and fatigue testing load ratio on the near-threshold fatigue behavior of adhesives joints was evaluated experimentally. The experimental observations were then explained using finite element modeling. To generalize the conclusions, the majority of experiments and studies covered a broad range of crack growth rates, as low as fatigue threshold and as high as 10-2 mm/cycle. Having understood the significant testing and design parameters, an adhesive system can be designed based on a safe cyclic load that produces an insignificant (for automotive industry) or reasonably low but known crack growth rate (for aerospace industry).
6

Near-threshold Fatigue of Adhesive Joints: Effect of Mode Ratio, Bond Strength and Bondline Thickness

Azari, Shahrokh 05 September 2012 (has links)
The main objective of the project was to establish a fracture-mechanics energy-based approach for the design of structural adhesive joints under cyclic loading. This required understanding how an adhesive system behaved near its fatigue threshold, and how the key factors affected this behavior in a fresh undegraded joint. The investigated factors were mode ratio (phase angle), substrate material, surface treatment and surface roughness (both affecting the bond strength), bondline thickness and load ratio. It was first required to understand how the adhesive system behaved under quasi-static loading by examining a fracture mechanics-based design approach for adhesive systems with different substrate materials and geometries. Experiments were initially performed to characterize the strength of aluminum and steel adhesive systems based on the fracture envelope, critical strain energy release rate as a function of the mode ratio. Ultimate failure loads of aluminum and steel adhesive joints, having different overlap end conditions and different geometries were then experimentally measured. These values were compared with the failure loads extracted from the fracture envelope. Considering the toughening behavior of the adhesive in the fracture mechanics analyses, a very good agreement (average of 6%) was achieved between the predictions and experiments for all types of overlap end conditions and geometries. Different fatigue threshold testing approaches, which are commonly used in the literature or suggested by the ASTM standard, were evaluated for the cracked and intact fillet joints. Based on the experimental and analytical studies, the most appropriate technique for fatigue testing and characterization of adhesive systems was suggested. Comparing the mixed-mode near-threshold behavior of different adhesive systems with the fracture behavior and fatigue mode-I and mixed-mode high crack growth rates showed the high sensitivity of the mixed-mode near-threshold fatigue to the subtle changes in the interfacial bond strength. In order to make a baseline for the design of adhesive joints under cyclic loading, similar to the previous fracture tests and following the energy-based approach, fatigue behavior was characterized as a function of the loading mode ratio for aluminum and steel adhesive joints. The effect of substrate material, surface treatment, bondline thickness, surface roughness and fatigue testing load ratio on the near-threshold fatigue behavior of adhesives joints was evaluated experimentally. The experimental observations were then explained using finite element modeling. To generalize the conclusions, the majority of experiments and studies covered a broad range of crack growth rates, as low as fatigue threshold and as high as 10-2 mm/cycle. Having understood the significant testing and design parameters, an adhesive system can be designed based on a safe cyclic load that produces an insignificant (for automotive industry) or reasonably low but known crack growth rate (for aerospace industry).
7

Non-linear Mathematical Modeling Of Gear Rotor Bearing Systems Including Bearing Clearance

Gurkan, Niyazi Ersan 01 November 2005 (has links) (PDF)
ABSTRACT NON-LINEAR MATHEMATICAL MODELING OF GEAR-ROTOR-BEARING SYSTEMS INCLUDING BEARING CLEARANCE G&Uuml / RKAN, Niyazi Ersan M.S. Department of Mechanical Engineering Supervisor: Prof. Dr. H. Nevzat &Ouml / ZG&Uuml / VEN November 2005, 130 pages In this study, a non-linear mathematical model of gear-rotor systems which consists of elastic shafts on elastic bearings with clearance and coupled by a non-linear gear mesh interface is developed. The mathematical model and the software (NLGRD 2.0) developed in a previous study is extended to include the non-linear effects due to bearing clearances by using non-linear bearing models. The model developed combines the versatility of using finite element method and the rigorous treatment of non-linear effect of backlash and bearing clearances on the dynamics of the system. The software uses the output of Load Distribution Program (LDP), which computes loaded static transmission error and mesh compliance for the contact points of a typical mesh cycle, as input. Although non-varying mesh compliance is assumed in the model, the excitation effect of time varying mesh stiffness is indirectly included through the loaded static transmission error, which is taken as a displacement input into the system. Previous computer program which was written in Fortran 77 is rewritten by using MatLAB 7.0 and named as NLGRD (Non-Linear Geared Rotor Dynamics) Version 3.0. The program is highly flexible and open to further developments. The program calculates dynamic to static load ratio, dynamic transmission error, forces and displacements at bearings. The mathematical model suggested and the code (NLGRD version 3.0) are validated by comparing the numerical results obtained from the model suggested with experimental data available in literature. The results are also compared with those of previously developed non-linear models. The effects of different system parameters such as bearing stiffness, bearing clearance and backlash on the gears are investigated. The emphasis is placed on the interaction of clearances in bearings with other system parameters.
8

Experimental Investigations On Near-Threshold Events On Fatigue Crack Growth

Yamada, Yoshinori 11 December 2009 (has links)
In the past, the disagreement of near-threshold fatigue-crack growth (FCG) rate data generated from constant Kmax tests, high load ratio (minimum to maximum load) constant R tests, and ΔKeff based data was a mysterious issue. Because of the disagreement, a variety of test or analysis methods were created to correlate FCG rate data. It was suspected that the ASTM threshold test method using load reduction was inducing remote crack closure due to plastically deformed material, which caused elevated thresholds and slower rates than steady-state behavior. The first goal of this study was the development of a test method to eliminate remote closure during threshold testing. In order to avoid/minimize remote closure effect, compression-precracking methods were used to initiate a crack from a starter notch on compact specimens. Two materials with different fatigue crack surface profiles (flat or very rough) were tested and the results generated from the conventional ASTM precracking method and the compression-precracking test method were compared. In order to understand the disagreement of near-threshold data, crack-opening load measurements were performed from locally (near crack tip) installed strain gages instead of the remote gage (i.e., back face gage). Some careful specimen preparations were performed to avoid out-of-plane bending, to maintain straight crack fronts, and to ensure testing system linearity. It was known that remote gages, such as crack-mouth- opening-displacement-gages were insensitive to measuring load-strain records near threshold. By using local gages, the crack closure effects were clearly observed even in high load ratio (R) tests, like or higher than R = 0.7, and constant Kmax tests, which were believed to be crack closure free. By measuring load-reduced-strain records from local gages, crack-opening loads were able to correlate FCG rate data and showed that ΔKeff-rate data was unique for a wide variety of materials. By comparing (ΔKeff)th values, it may provide reasonable guidance for the material resistance against FCG. Because of “high R crack closure”, some theories considered in the past may need to be reconsidered. First, constant Kmax tests are not entirely crack-closure free. Second, there is no critical load ratio, Rc, to indicate the transition from crack-closure affected to crack-closure free data, and Kmax effects that appear in ΔKth-Kmax relations. Research has shown that the three dominate crack-closure mechanisms (plasticity-, roughness- and debris-induced crack closure) FCG rate behavior in the threshold regime from low to high load ratios.
9

The Effects of Load Ratio on Threshold Fatigue Crack Growth of Aluminum Alloys

Newman, John Andrew 10 November 2000 (has links)
The integrity of nearly all engineering structures are threatened by the presence of cracks. Structural failure occurs if a crack larger than a critical size exists. Although most well designed structures initially contain no critical cracks, subcritical cracks can grow to failure under fatigue loading, called fatigue crack growth (FCG). Because it is impossible or impractical to prevent subcritical crack growth in most applications, a damage tolerant design philosophy was developed for crack sensitive structures. Design engineers have taken advantage of the FCG threshold concept to design for long fatigue lives. FCG threshold (DKth) is a value of DK (crack-tip loading), below which no significant FCG occurs. Cracks are tolerated if DK is less than DKth. However, FCG threshold is not constant. Many variables influence DKth including microstructure, environment, and load ratio. The current research focuses on load ratio effects on DKth and threshold FCG. Two categories of load ratio effects are studied here: extrinsic and intrinsic. Extrinsic load ratio effects operate in the crack wake and include fatigue crack closure mechanisms. Intrinsic load ratio effects operate in the crack-tip process zone and include microcracking and void production. To gain a better understanding of threshold FCG load ratio effects (1) a fatigue crack closure model is developed to consider the most likely closure mechanisms at threshold, simultaneously, and (2) intrinsic load ratio mechanisms are identified and modeled. An analytical fatigue crack closure model is developed that includes the three closure mechanisms considered most important at threshold (PICC, RICC, and OICC). Crack meandering and a limited amount of mixed-mode loading are also considered. The rough crack geometry, approximated as a two-dimensional sawtooth wave, results in a mixed-mode crack-tip stress state. Dislocation and continuum mechanics concepts are used to determine mixed-mode crack face displacements. Plasticity induced crack closure is included by modifying an existing analytical model, and an oxide layer in the crack mouth is modeled as a uniform layer. Finite element results were used to verify the analytical solutions for crack-tip stress intensity factor and crack face displacements. These results indicate that closure for rough cracks can occur at two locations: (1) at the crack-tip, and (2) at the asperity nearest the crack-tip. Both tip contact and asperity contact must be considered for rough cracks. Tip contact is more likely for high Kmax levels, thick oxide layers, and shallow asperity angles, a. Model results indicate that closure mechanisms combine in a synergistic manner. That is, when multiple closure mechanisms are active, the total closure level is greater than the sum of individual mechanisms acting alone. To better understand fatigue crack closure where multiple closure mechanisms are active (i.e. FCG threshold), these interactions must be considered. Model results are well supported by experimental data over a wide range of DK, including FCG threshold. Closure-free load ratio effects were studied for aluminum alloys 2024, 7050, and 8009. Alloys 7050 and 8009 were selected because load ratio effects at FCG threshold are not entirely explained by fatigue crack closure. It is believed that closure-free load ratio mechanisms occur in these alloys. Aluminum alloy 2024 was selected for study because it is relatively well behaved, meandering most load ratio effects are explained by fatigue crack closure. A series of constant Kmax threshold tests on aluminum alloys were conducted to eliminate fatigue crack closure at threshold. Even in the absence of fatigue crack closure load ratio (Kmax) effects persist, and are correlated with increased crack-tip damage (i.e. voids) seen on the fatigue crack surfaces. Accelerated FCG was observed during constant Kmax threshold testing of 8009 aluminum. A distinct transition is seen the FCG data and is correlated with a dramatic increase in void production seen along the crack faces. Void production in 8009 aluminum is limited to the specimen interior (plane-strain conditions), promoting crack tunneling. At higher values of Kmax (+_ 22.0 MPaà m), where plane-stress conditions dominate, a transition to slant cracking occurs at threshold. The transition to slant cracking produces an apparent increase in FCG rate with decreasing DK. This unstable threshold behavior is related to constraint conditions. Finally, a model is developed to predict the accelerated FCG rates, at higher Kmax levels, in terms of crack-tip damage. The effect of humidity (in laboratory air) on threshold FCG was studied to ensure that environmental effects at threshold were separated from load ratio effects. Although changes in humidity were shown to strongly affect threshold FCG rates, this influence was small for ambient humidity levels (relative humidity between 30% and 70%). Transient FCG behavior, following an abrupt change in humidity level, indicated environmental damage accumulated in the crack-tip monotonic plastic zone. Previous research implies that hydrogen (a component of water vapor) is the likely cause of this environmental damage. Analysis suggests that bulk diffusion is not a likely hydrogen transport mechanism in the crack-tip monotonic plastic zone. Rather, dislocation-assisted diffusion is presented as the likely hydrogen transport mechanism. Finally, the (extrinsic) fatigue crack closure model and the (intrinsic) crack-tip damage model are put in the context of a comprehensive threshold model. The ultimate goal of the comprehensive threshold model is to predict fatigue lives of cyclically loaded engineering components from (small) crack nucleation, through FCG, and including failure. The models developed in this dissertation provide a basis for a more complete evaluation of threshold FCG and fatigue life prediction. The research described in this dissertation was performed at NASA-Langley Research Center in Hampton, Virginia. Funding was provided through the NASA GSRP program (Graduate Student Researcher Program, grant number NGT-1-52174). / Ph. D.

Page generated in 0.1088 seconds