• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PATIENT-SPECIFIC PATTERNS OF PASSIVE AND DYNAMIC KNEE JOINT MECHANICS BEFORE AND AFTER TOTAL KNEE ARTHROPLASTY

Young, Kathryn Louise 09 July 2013 (has links)
Disregard for patient-specific joint-level variability may be related to decreased functional ability, poor implant longevity and dissatisfaction post-TKA. The purpose of this study was to, 1) compare pre and post-implant intraoperative passive knee adduction angle kinematic patterns and characterize the effect of surgical intervention on each pattern, 2) examine the association between passive pre and post-implant knee kinematics measured intraoperatively and dynamic knee kinematics and kinetics pre and post-TKA measured during gait, and 3) compare dynamic post-TKA kinematic and kinetic patterns between patient-specific knee recipients and traditional TKA recipient. Patients received a TKA using the Stryker Precision Knee navigation system capturing pre/post-implant kinematics through a passive range of flexion. One-week prior and 1-year post-TKA patients underwent three-dimensional gait analysis. Knee joint waveforms were calculated according to the joint coordinate system. Principal component analysis (PCA) was applied to frontal plane gait angles, moments and navigation angles. Paired two- tailed t-tests were used to compare principal component (PC) scores between pre and post-implant patterns, and a one-way ANOVA was used to test if post-implant patterns were significantly different from zero. Two-tailed Pearson correlation coefficients tested for associations between navigation and gait PCscores, and an un-paired two-tailed t-test was used to compare PCscores between patient-specific and traditional TKA groups. Six different passive kinematic phenotypes were captured pre-implant. Although some waveform patterns persisted at small magnitudes post-implant (PC1 and PC3: p<0.001), curves remained within the clinically acceptable alignment range through passive motion. A positive correlation was found between navigation adduction angle PC1 and gait adduction moment PC1 pre and post-TKA (p<0.001, r=0.79; p<0.01 r=0.67), and a negative correlation between navigation adduction angle PC1 and gait adduction angle PC1 post-TKA (p=0.03, r=-0.53). The patient-specific group showed significantly lower PC2 scores than the traditional TKA group (p=0.03), describing a lower flexion moment magnitude during early stance phase, possibly representing a functional limitation or non- confidence during gait. These results were an important first step to assess patient- specific approaches to TKA, suggesting possible applications for patient-specific intraoperative kinematics to aid in surgical decision-making and influence functional outcomes.
2

The Effect of Mismatch of Total Knee Replacement Components with Knee Joint : A Finite Element Analysis

Kanyal, Rahul January 2016 (has links) (PDF)
It has been noticed that the need for total knee replacement surgery is increasing for Asian region. A total knee replacement is a permanent surgical solution for a patient having debilitating pain in knee joint suffering from arthritis. In this surgery, knee joint is replaced with components made up of bio-compatible materials after which the patient can resume the normal day to day activities. Western population has bigger build compared to Asian population. Most of the total knee replacement prosthesis are designed for western population. When these total knee prosthesis are used for Asian population, they cause a mismatch leading to various clinical complications such as reduced range of motion and pain. The studies have been limited to clinical complications caused by the mismatch. To address this limitation, current study is aimed to find the mechanical implications such as stress distribution, maximum stresses, maximum displacements etc., caused by mismatch of total knee replacement components with knee. A surgeon selects total knee components for a patient based on some critical dimensions of femur and tibia bone of knee. In addition, a method to accurately calculate these dimensions of the femur and tibia bone of a real knee was developed in the current study. This method calculated the points of curvature greater than a threshold (decided based on the radius of the curvature) found out using the formula of curvature. Further, the highest point was calculated based on maximum height from a line drawn between initial and final point within the captured points, also the extreme points were calculated based on the sign change in slope of points within the captured points, giving multiple points on the boundary of bones extracted in an MRI image of a patient. The distance between two selected farthest points, out of these points, in specific direction was the basis for selection of the TKR components. Total knee replacement components were modeled in Geomatics Studio 12 software, bones were modeled in Rhinoceros 5 software, assembly of bones and total knee replacements components was done in Solid works 2013 software, the finite element model of the assembly was developed in Hyper mesh 11 software and, the stress analysis and post processing was done in ABAQUS 6.13 software. A static, implicit non linear analysis was performed. Simulations were performed for two conditions: at standing (0o of flexion) and at hyper-flexed (120o of flexion). In order to figure out if there were any mechanical implications of mismatch, the full model of assembly consisting of femur, tibia and fibula bones assembled with total knee replacement components, and the reduced model consisting of only total knee replacement components were simulated separately, results of which have been discussed in the current thesis. In this work, the effect of change of length of ligaments at 120o of flexion in detail was also studied. This study brought out various outcomes of contact mechanics and kinematics between the components of total knee replacement prosthesis.

Page generated in 0.067 seconds