• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A model for the strategic implementation of design policy in Taiwan

Cheng, Paul Y. J. January 2000 (has links)
No description available.
2

Semiotic Studies on Holistic Order in Product Design

Ahmed, Saleem S January 2016 (has links) (PDF)
‘Holistic Order’ is a new term used in this study. In literature, its synonyms such as beauty, order, visual order, and aesthetic order have been in usage for a long time. Historical studies on arts & crafts from philosophical and aesthetic perspectives reveal that the term ‘beauty’ no longer holds the same meaning as it used to for centuries. ‘Holistic Order’ is the new term being proposed in place of ‘beauty’ in product design. It is argued that this term is more appropriate in present day context. Beauty has been a study of interest to philosophers, aestheticians, poets, artists, scientists, and the common man alike for time immemorial. Though the field of industrial design has been in existence since the industrial revolution in the early 20th century, the roots of this field originates from the time of Plato and Aristotle, more than 2400 years ago. In spite of this long history, there has not been a reliable tool / framework available to product designers, which they can rely on in their pursuit to designing products that are holistic i.e. able to please not only to the physical senses but also to the emotional and mental faculties. Studies in the history of arts & crafts and fundamentals of aesthetics from a new perspective have revealed a perceptible gap in the most widely used design approach. This research work is an attempt to fulfil that gap. Using semiotic and communication theory, existence of dichotomy in product design has been established. Based on this and the widely used elements and principles approach in product design, a new integrated conceptual framework for holistic order in product design has been proposed. It is argued that this framework is more suited to designing holistically than any of the available ones. The objective of this framework is to enable better understanding of the different aspects involved in the aesthetics of product design, their relationships, and the resulting attainments. Knowledge of this framework is useful to designers for designing products in a holistic manner. In the process, more attractive, appealing, and meaningful designs are enabled. Also, it is useful to design critics for identifying factors that are responsible for aesthetic qualities and values in product design. All the interdependent nature of relationships among various parts of the framework of holistic order have been explained. ‘Holistic Order Index’ is proposed as a new measure of design qualities in product design. The Framework of Holistic Order and Holistic Order Index have been validated through qualitative and quantitative methods in two studies, one involving 30 designers and another involving 108 subjects representing the society at large. In another study involving 32 subjects, reliability of the methodology has been established. Results of these studies have been discussed in the thesis and the contributions summarized.
3

Manufacture and Evaluation of Cast Aluminum Foam Heat Exchangers

Samudre, Prabha January 2015 (has links) (PDF)
Metal foams have many attractive properties such as light weight, low relative density, energy absorption capability etc. One of the main advantages of metal foam is that the foam inherits several properties of the parent metal, at the same time, at a fraction of the weight. Metal foams are basically of two types; closed pore and open pore. In the open pore configuration the highly porous structure with large surface to volume ratio is attractive in thermal applications such as heat exchangers, small scale refrigeration, diesel exhaust cooling and heat sink for electronics. Large surface area to volume ratio of the heat transfer area is an important parameter in design of heat exchangers. Application of open cell metal foam as a heat exchanger involves production of the metal foam, cutting/drilling the metal foam to required dimensions and attaching it to a substrate or duct. Foams are cut by various methods such as by using circular saw, band saw, abrasive sawing wire or electrical discharge machining. Cutting or drilling operations plastically deform the struts and affect the surface roughness of the struts and hence, the contact area between the foam and the substrate. The foam and the substrate are then joined to get the final product. Various techniques are adopted to join the foam and substrate that includes, press fit, welding, soldering, brazing and use of epoxy adhesives or thermal glue. These methods either deform the foam plastically or involve a bonding material which involves an additional step in manufacturing and is generally necessary to reduce the thermal resistance at the interface. Every secondary step involved in machining the foam and joining it to substrate/duct add to the energy, time and cost of the component. Significant amount of materials wastage occurs during the production and machining steps of the metal foam. Bonding material used for attaching foam to the substrate makes the recycling of the heat exchangers difficult. In the present research work the above issues were rectified by introducing a novel method of fabricating the heat exchanger in a single step. This can be done by producing open cell foam, bonded to the substrate in a single step to get the ready to use heat exchanger. The uniqueness of the method/ process is that it provides an advantage of manufacturing heat exchangers consisting of open cell aluminium foam both inside and outside the aluminium duct/substrate. Here open cell metal foam is metallurgic ally bonded to the aluminium duct without producing any distortion in the aluminium duct. The present method avoids the secondary cutting and joining operations, hence reducing material and energy wastage. This heat exchanger does not need a bonding material at the foam duct interface which makes the product completely recyclable without even having to separate the aluminium foam and, many-at-times, the copper substrate. Further, in the present process no hazardous material is involved in the fabrication process of the heat exchanger and all the materials used for the foam production can be recycled. Another unique advantage of this process is that the foam can also be cast inside and outside the tube in a single step. This helps increase the heat transfer area per unit volume inside the tube increasing the effectiveness significantly. First, an attempt was made to cast aluminium foam over a Cu substrate. Spheres made of Plaster of Paris (PoP) were used as space holders to create pores in the foam. First, a dough of PoP was prepared by mixing sufficient amount of water with the powder of PoP. Small pieces of PoP were taken from the dough and were rolled by hands to prepare spherical balls. Next, a casting setup was made where a die made of stainless steel was placed in a crucible whose bottom was filled with sand. A tube/duct made of copper was placed at the centre of the die and PoP balls were dropped around the duct. This setup was then placed in a furnace and was preheated to remove all the moisture from the PoP. Molten aluminium at around 700 °C was poured into the preheated die. After solidification, the die was opened and cast was allowed to cool in ambient air. PoP balls were removed by using a sharp needle and by dipping the casting in acetic acid. After removal of PoP from the cast, interconnected holes/cavities formed in the place of space holders/PoP balls, forming pores in the foam. There are some limitations of this method such as removal of PoP was tedious and needed chemicals that need to be discarded, PoP cannot be recycled and creates waste, small amount of moisture present in PoP balls can cause an explosion. The bonding between aluminium foam and Cu substrate obtained was not good, giving rise to thermal contact resistance. Due to the above limitations further implementation of this process using PoP was not explored further. There was a need of space holder material which can withstand the temperature of molten Al and also can be removed easily from the cast without any use of chemicals. Obtaining metallic bonding between foam and Cu substrate was difficult due to the corrosion layer formation at the interface of Al and Cu substrate due to preheating. If preheating was not carried out full penetration of the molten aluminium did not take place in the space available in between the spheres. Therefore, it was decided to cast Al foam over Al substrate. The main challenge and difficulty was to cast open cell Al foam inside and outside the tube/duct made of the same material (Al) without distorting the tube/duct as well as achieving consistent metallic bonding between the two. This has been successfully done by gravity casting method a single step manufactured and ready to use open cell Al foam heat exchanger were fabricated. A casting setup was prepared, which consisted of a commercially pure aluminium tube placed in the middle of a stainless steel split die. The gap between the tube and die was filled with the salt spheres. An uncommon and new approach was adopted to produce NaCl salt spheres. NaCl salt balls (spherical and ovoid) of different diameters were processed by casting route. The casting step of NaCl is necessary as the moisture present in NaCl can be completely removed during the melting of NaCl. NaCl was chosen as it had a melting point higher than aluminium. The casting setup was placed in a furnace and was preheated to various temperatures up to 550 °C. Commercially pure aluminium was melted separately in a crucible and was poured into the steel die at 700oC. The liquid metal flows through the die and fills the cavities between the salt balls. The die was opened immediately after solidification of molten Al and cast was allowed to cool in ambient air. The salt (NaCl), which was still solid, was dissolved in water to get the foam structure. With proper control of the preheat temperature and temperature of liquid aluminium no distortion of the aluminium duct was observed throughout the length of the heat exchanger. Consistent and complete fusion/ metallic bonding was observed at the interface of Al foam and Al substrate/duct. Several heat exchangers with different porosity and pore geometry with the aluminium foam cast outside the tube and both inside and outside of the tube were fabricated. The beauty of the designed method is that it is simple and cost effective and eliminates the major issue of thermal contact resistance since the foam and the duct are made of the same material and are bonded in the liquid state leaving no interface between the foam and the duct. Further, foam can also be cast inside the duct in the same step while casting the foam outside the tube, giving an integral heat exchanger which has higher heat transfer surface area to volume ratio inside and outside the duct. This is expected to further improve the efficiency and effectiveness of the heat exchanger An added advantage of this method is that the heat exchanger can be recycled easily in a single step re-melting route. Further, the heat exchanger does not use any hazardous material during manufacture that needs attention during recycling. After the production and fabrication of the heat exchangers, the thermal performance or effectiveness of the heat exchangers was assessed, to evaluate its usefulness and suitability for heat transfer application. An experimental test setup was fabricated in the laboratory to perform the heat transfer tests. The experimental test setup consists of the following major components;1) A test chamber whose function was to insulate the heat exchangers from the surroundings and to avoid any heat loss to the surroundings, 2) An air blower used to supply cold fluid (air) to the test chamber, 3) A constant temperature bath was used to supply the hot fluid, which was water in this case, in the duct of the heat exchanger, 4) A rotameter was used to measure the volumetric flow rate of the cold fluid and 5) A pressure gauge having the pressure measurement range between 1 mbar to 160 mbar to measure the pressure drop across the test chamber. K-type chromel – alumel thermocouples having temperature measurement range between -270 °C to 1,260 °C were used to measure the temperature of hot and cold fluids during the experiments. By aid of the data logger system and computer, temperature readings were recorded during the tests and were used further for the heat transfer calculations. For testing the aluminium foam heat exchangers was placed in the insulated test chamber. Hot water was supplied inside the duct of heat exchanger whereas air at room temperature was supplied around the foams at varying flow rates during the tests. During the tests, temperature readings were taken at steady state condition. NTU-Effectiveness method was used to evaluate the thermal performance of heat exchangers. Overall results obtained by this experimental study are as follows • As the inlet temperature difference between hot and the cold fluids increases the heat transfer rate and the effectiveness of the heat exchangers also increases. • At a constant flow rate of hot fluid, heat exchangers exhibits significantly better thermal performance at lower flow rate of cold fluid compared to higher flow rate. As the flow rate of cold fluid increases, the velocity of the fluid increases and consequently, reduces the optimum interaction time between hot and the cold fluids required for the efficient heat transfer. • At a constant and low flow rate of cold fluid the effectiveness of the heat exchanger increases as the porosity of the foam increases. But when the flow rate of cold fluid was increased further after a certain limit, the effectiveness value of the heat exchanger decreases. • Heat exchanger consisting of foam of higher porosity exhibits higher effective. • Heat exchanger having foam inside and outside of the duct/tube exhibits significantly higher effectiveness compared to Al duct, Cu duct and other heat exchanger tested. • At a higher flow rate of the cold fluid, the heat exchangers consisting of foams of higher porosity, experience more drop in effectiveness compared to the heat exchanger having foams of low porosity. • Pressure drop across the length of the foam/fin increases as the volumetric flow rate of the cold fluid (m3/s) increases. • Surface area per unit volume and effectiveness values for bare Al tube is very low compared to Al foam heat exchangers resulting in the bare Al tube exhibiting much lower effectiveness compared to heat exchanger made of Al foam. • For a certain flow rate of fluids, the effectiveness of the heat exchanger increases up to a certain thickness of the Al foam. • Regardless of the thickness of the foam, the effectiveness of the heat exchangers is low at higher flow rate of cold fluid compared to lower flow rate. • These foam based heat exchanger had a much higher effectiveness when compared to that of other heat exchangers, data of which were got from literature. The present experimental study concludes that fuse bonding open cell aluminium foam over an Al duct or Al substrate can improve the thermal performance of the heat exchanger significantly. The thesis includes five chapters. Chapter 1 gives a detailed introduction about the metal foam, heat exchangers, thermal contact resistance and its effect on the heat transfer rate has been explained. This chapter also includes the overall aim and motivation for the research work. Chapter 2 covers the literature available on production methods of metal foam and its limitations has been listed out. And conventional methods of manufacturing open cell metal foam heat exchangers and its disadvantages have been explained in detailed. Chapter 3 covers in detail the novel method of production and fabrication of open cell metal foam heat exchangers. Chapter 4 includes an experimental study, where thermal performance of heat exchangers has been assessed through heat transfer experiments. Chapter 5 is the conclusions and future works.
4

Supporting Real-Time, Automated Evaluation of Difficulty in Manual Assembly

Santhi, B January 2017 (has links) (PDF)
Product designers address the costs of assembly during the design process. Design process can be more efficient if assembly issues could be addressed early in its design process. Doing this requires the ability to assess assemblability among others. Assemblability refers to the ease of assembling the final product from its parts. Assemblability evaluation is applied by product designers for quantitatively estimating the degree of difficulty of the assembly. This helps in identifying areas of improvement, so as to reduce process time and production costs. This work focuses on assessing assemblability in a manual assembly and its importance in the earlier phases of design. Literature contains various methods for assessing assemblability (e.g. Boothroyd-Dewhurst method, the DFA house, Sturges DFA calculator and Sony DFA method). These methods are typically rule-based and their use requires insight and knowledge on the part of the designer. Further, the designer has to interpret and apply them differently in each specific and unique case. Literature also contains methods for ergonomic assessment of manual work and its link with assemblability. Both observation based ergonomic assessment such as RULA, REBA, VIDAR, LUBA and OWAS and instrumentation based ergonomic assessment using electro-goniometer and accelerometer are the techniques reviewed in this thesis for their suitability in assembly assessment. The most recent trend in the area is automation of the evaluation process. This thesis proposes an approach to automated assessment of assemblability using electromagnetic trackers. In spite of advances in industrial automation, manual assembly tasks continue to be an important feature of many industrial operations. The method proposed in the thesis is for the assessment of assemblability of manual assembly that combines both time and postural analysis. The tool used for the static analysis is called Rapid Upper Limb Assessment (RULA); for dynamic analysis a new method of time analysis is proposed that is based on the ratio of time spent in fine and gross motions carried out in an assembly process. The difficulty of assembly of a series of manual assembly tasks are carried out in a laboratory setting. Then by correlating this assessment with the feedback on the difficulty of these assembly task obtained from the subjects who carried out these tasks. The remaining work carried out as a part of this thesis is focussed on automating the process of carrying out the above assessment in an automated manner. Suitability of electromagnetic trackers as a means for automated capture of data necessary for executing the proposed assessment method is studied. Electromagnetic trackers have been used to capture postural data for various limbs of the assembly operators. Data from the limbs are then analysed to identify, to which limb movement signifies which sources of difficulty (i.e. reach, visibility, etc.) in assembly; for example reach difficulty is indicated by torso movement. Finally, the thesis proposes as a part of the future work in possible improvement of the assessment method. Also, its application using a virtual reality (VR) platform assesses in ascertaining ease or difficulties in assembly and many.
5

Development of Multipoint Haptic Device for Spatial Palpation

Muralidharan, Vineeth January 2017 (has links) (PDF)
This thesis deals with the development of novel haptic array system that can render distributed pressure pattern. The haptic devices are force feedback interfaces, which are widely seen from consumer products to tele-surgical systems, such as vibration feedback in game console, mobile phones, virtual reality applications, and daVinci robots in minimally invasive surgery. Telemedicine and computer-enabled medical training system are modern medical infrastructures where the former provides health care services to people especially in rural and remote places while the latter is meant for training the next generation of doctors and medical students. In telemedicine, a patient at a remote location consults the physician at a distant place through the telecommunication media whereas in computer enabled medical training system, physician and medical students interact with the virtual patient. The experience of physical presence of the remote patient in telemedicine and immersive interaction with virtual patient on the computer-enabled training system can be attained through haptic devices. In this work we focus on palpation simulation in telemedicine and medical training systems. Palpation is a primary diagnostic method which involves multi-finger, multi-contact interaction between the patient and physician. During palpation, a distributed pressure pattern rather than point load is perceived by the physician. The commercially available haptic devices are single and five point devices, which lack the face validity in rendering distributed pressure pattern; there are only a few works reported in literatures that deal with palpation simulation. There is a strong need of a haptic device which provide distributed force pattern with multipoint feedback which can be applied for palpation simulation in telemedicine and medical training purposes. The haptic device should be a multipoint device to simulate palpation process, an array device to render distributed force pattern, light weight to move from one place to another and finally it has to cover hand portion of physician. We are proposing a novel under-actuated haptic array device, called taut cable haptic array system (TCHAS), which in general is a m x n system, consist of m+n actuators to obtain m.nhaptels, that are multiple end effectors. A prototype of 3 x 3 TCHAS is developed during this work and detailed study on its characterisation is explored. The performance of device is validated with elaborate user study and it establishes that the device has promising capability in rendering distributed spatio-temporal pressure pattern.
6

Towards Automated Design of Toggle Switch Mechanisms

Kalyan Ramana, G January 2016 (has links) (PDF)
This work deals with addressing the issues related to design of double toggle switch mechanisms with emphasis on structural, dimensional and dynamic aspects. Currently, almost all the issues related to electrical switches are dealt from electromagnetic point of view; the operating mechanism is hardly touched. It is observed that kinematic parameters influence electrical performance of switch significantly. Therefore, there is a need to develop methodologies for supporting exploration of diverse kinematic chains (KCs) for this purpose. Visual inspection is tedious and error prone even when a complete list of design criteria is available, hence, the work presented in the thesis contributes towards automated design of toggle switch mechanisms. In this context, in house modular kinematics data structure is found useful for using it as a tool in the design of toggle switch. Modular kinematics, typically used for kinematic analysis, works on the principle of finding the configuration of a mechanism using a given set of modules by a procedure called module sequence. This module sequence is used and interpreted in a number of ways for its effective use in various design stages. Structurally, a set of seven conditions must be satisfied by a KC to exhibit double toggle. These conditions are broadly classified into three categories: criteria for KC, function assignment criteria and criteria for stoppers. These three criteria are to be checked automatically by use of module sequence in the same order as mentioned. In the criteria for KC, one of the conditions is that, the KC should not have fractionated degrees of freedom (d.o.f.). Hence, detection of fractionation in a KC is inevitable. In literature, is was found that the algorithms for detection operate at their worst case complexity, O(n4), and some of them do not report joint fractionation. Thus, the algorithms are not only robust but also computationally expensive. Therefore, a frugal and comprehensive method O(n2) is implemented to detect fractionation using modular kinematics. Also, inherent structural pattern embedded in fractionated KCs is hardly studied in literature. It is found that the way body and joint fractionation is defined in fractionated KCs is inconsistent. So, fractionation is interpreted as symbolic partitioning of joints and links in the traditional body and joint fractionation types respectively. Based on the number of ways of partitioning, simple and multiple types of fractionation are recognized. Valid partitions are identified using the notion of fractionating and non-fractionating subchains. Relative locations of these subchains influence distribution of d.o.f. across the fractionated KC. Conventional representation of KCs as links and joints or graphs is difficult to comprehend this distribution. For this, a novel concept of fractionation graph is introduced that gives d.o.f. distribution information and the relative locations of the constituent subchains across the KC. Modular kinematics gives a constructive description of fractionated KCs. Characterization of fractionated KCs, based on presence of multiple separation links, is introduced as order of fractionation. Uniqueness for a given order of fractionation is also justified. After the criteria for KC, a KC is tested for feasibility for function assignment criteria. This requires recognition of active and passive subchains of the KC with respect to input and output pairs. For this, module sequence is characterized for recognition of the subchains. Based on these subchains, locations of stoppers are derived. Using this information, an algorithmic approach to assign functions (functions like spring, ground link, input link, etc.) to derive distinct driving mechanisms provided isomorphic elements (links and joints) of the KC are known beforehand, is introduced. The design parameters influencing dimensional synthesis have been identified as dimensions of links, spring anchor points and stopper locations. Sub-problems associated with each parameter are analyzed. It is found out that optimum location of stoppers for selecting operational range of motion is necessary by taking into account the considerations of timing of switch and impact velocity. Based on the analysis, an algorithmic way to design single toggle switch mechanisms is introduced. Timing for closing or opening of a switch is one of the critical measure that determines its performance. Timing should be as low as possible without exceeding the impact velocity at the instant contacts meet each other. Timing of a switch depends on the dimensions of the links, inertial parameters, spring stiffness etc. For a given timing for a mechanism, dynamic synthesis, in this thesis, deals with finding the inertial parameters of the links using Quinn's energy distribution method, modular kinematics, and Nelder and Mead's downhill simplex method for optimization. This thesis helps the designer to use modular kinematics as a potential automated tool to select a valid design to make the solution space more meaningful in the design of toggle switch mechanisms.
7

Geometric Reasoning with Mesh-based Shape Representation in Product Development

Adhikary, Nepal January 2013 (has links) (PDF)
Triangle meshes have become an increasingly popular shape representation. Given the ease of standardization it allows and the proliferation of devices (scanners, range images ) that capture and output shape information as meshes, this representation is now used in applications such as virtual reality, medical imaging, rapid prototyping, digital art and entertainment, simulation and analysis, product design and development. In product development manipulation of mesh models is required in applications such as visualization, analysis, simulation and rapid prototyping. The nature of manipulation of the mesh includes annotation, interactive viewing, slicing, re-meshing, mesh optimization, mesh segmentation, simplification and editing. Of these editing has received the least attention. Mesh model often requires editing either locally or globally based on the application. With the increased use of meshes it is desirable to have formal reasoning tools that enable manipulation of mesh models in product development. The mesh model may contain artifacts like self-intersection, overlapping triangles, inconsistent normal’s of triangles and gaps or holes with or without islands. It is necessary to repair the mesh before further processing the mesh model. An automatic algorithm is proposed to repair and fill arbitrary holes while maintaining curvature continuity across the boundaries of the hole. The algorithm uses slices across the hole to first identify curves that bridge the hole. These curves are then used to find the surface patch that would fill the hole. The proposed algorithm works for arbitrary holes in any mesh model irrespective of the type of underlying surface and is able to preserve features in the mesh model that are missing in the input information. Since editing during product development is mostly feature based, an automatic algorithm to recognize shape features by directly clustering the triangles constituting a feature in a mesh model is proposed. Shape features addressed in the thesis are volumetric features that are associated with either addition or removal of a finite volume. The algorithm involves two steps – isolating features in 2D slices followed by a 3D traversal to cluster all the triangles in the feature. Editing a mesh model mainly implies editing local volumetric features in that model. An automatic algorithm is proposed for parametric editing of volumetric features in the mesh model. The proposed algorithm eliminates the need of original CAD model while manipulating any volumetric feature in the mesh model based on feature parameters. An automatic algorithm to manipulate global shape parameters of the object using the mesh model is developed. Global shape parameters include thickness, drafts and axes of symmetry. As the mesh models do not explicitly carry this information global editing of mesh models (other than for visualization) has not been attempted thus far. This thesis proposes the use of mid-surface to identify and manipulate global shape parameters for a class of objects that are classified as thin walled objects. Mid-curves are first identified on slices of the part and then the mid-surface is obtained from these mid-curves. Results of implementation are presented and discussed along with the scope for future work.
8

Contribution to interoperable products design and manufacturing information : application to plastic injection products manufacturing / Contribution à l'interopérabilité des informations de conception et de fabrication de produits : application à la fabrication par injection de produits plastiques

Szejka, Anderson Luis 14 October 2016 (has links)
La compétitivité toujours plus importante et la mondialisation ont mis l'industrie manufacturière au défi de rationaliser les différentes façons de mettre sur le marché de nouveaux produits dans un délai court, avec des prix compétitifs tout en assurant des niveaux de qualité élevés. Le PDP moderne exige simultanément la collaboration de plusieurs groupes de travail qui assurent la création et l’échange d’information avec des points de vue multiples dans et à travers les frontières institutionnelles. Dans ce contexte, des problèmes d’interopérabilité sémantique ont été identifiés en raison de l'hétérogénéité des informations liées à des points de vue différents et leurs relations pour le développement de produits. Le travail présenté dans ce mémoire propose un cadre conceptuel d’interopération pour la conception et la fabrication de produits. Ce cadre est basé sur un ensemble d’ontologies clés, de base d’ingénierie et sur des approches de cartographie sémantique. Le cadre soutient les mécanismes qui permettent la conciliation sémantique en termes de partage, conversion et traduction, tout en améliorant la capacité de partage des connaissances entre les domaines hétérogènes qui doivent interopérer. La recherche a particulièrement porté sur la conception et la fabrication de produits tournants en plastique et explore les points particuliers de la malléabilité - la conception et la fabrication de moules. Un système expérimental a été proposé à l’aide de l'outil Protégé pour modéliser des ontologies de base et d’une plateforme Java intégrée à Jena pour développer l'interface avec l'utilisateur. Le concept et la mise en œuvre de cette recherche ont été testés par des expériences en utilisant des produits tournants en plastiques. Les résultats ont montré que l'information et ses relations rigoureusement définies peuvent assurer l'efficacité de la conception et la fabrication du produit dans un processus de développement de produits moderne et collaboratif / Global competitiveness has challenged manufacturing industry to rationalise different ways of bringing to the market new products in a short lead-time with competitive prices while ensuring higher quality levels. Modern PDP has required simultaneously collaborations of multiple groups, producing and exchanging information from multi-perspectives within and across institutional boundaries. However, it has been identified semantic interoperability issues in view of the information heterogeneity from multiple perspectives and their relationships across product development. This research proposes a conceptual framework of an Interoperable Product Design and Manufacturing based on a set of core ontological foundations and semantic mapping approaches. This framework has been particularly instantiated for the design and manufacturing of plastic injection moulded rotational products and has explored the particular viewpoints of moldability, mould design and manufacturing. The research approach explored particular information structures to support Design and Manufacture application. Subsequently, the relationships between these information structures have been investigated and the semantics reconciliation has been designed through mechanisms to convert, share and translate information from the multi-perspectives. An experimental system has been performed using the Protégé tool to model the core ontologies and the Java platform integrated with the Jena to develop the interface with the user. The conceptual framework proposed in this research has been tested through experiments using rotational plastic products. Therefore, this research has shown that information rigorously-defined and their well-defined relationships can ensure the effectiveness of product design and manufacturing in a modern and collaborative PDP
9

Analysis of Vehicle Dynamics and Control of Occupant Biodynamics using a Novel Multi-Occupant Vehicle Model

Joshi, Divyanshu January 2016 (has links)
Due to the detrimental effects of ride vibrations on occupants and increasing safety concerns, improvement in vehicle dynamic characteristics has become a key focus of researchers. Typically, ride and handling problems have been dealt with independently. There is a dearth of vehicle models capable of capturing occupant biodynamics and its implication on vehicle ride and handling. Also in general, the objective of conventional control systems has been to attenuate vertical dynamic response of the sprung mass of a vehicle. Feedback control based algorithms are predominantly used in active/semi-active suspensions that ignore the biodynamics of occupants. In the current work, a new 50 degree-of-freedom (DOF) combined nonlinear multi-occupant vehicle model is developed using the lumped parameter modelling (LPM) approach. The current model provides a platform for performing a combined study of ride, handling and occupant biodynamics. The model is capable of simulating the combined effect of sitting occupancies, road inputs and driving maneuvers on biodynamic responses. It is analyzed using MATLAB/SIMULINK functionalities and validated by independently correlating the computed responses with existing experimental results. A study is performed on ride behavior of a vehicle-occupant system under two different transient road inputs. In addition, the effect of road roughness on vehicle ride is also studied. Random road profiles are generated from road roughness spectrum given in the ISO 8608:1995 manual. Insights are developed into the ride dynamics of a vehicle traversing over roads of classes A, B, C and D at given test velocities. The effect of sitting occupancies and vehicle velocities on lateral dynamics is also studied. Results underscore the need for considering sitting occupancies while analyzing vehicle dynamics and also highlight the potential of the current model. Furthermore, a Moore-Penrose Pseudoinverse based feed-forward controller is developed and implemented in an independently acting semi-active seat suspension system. Feasibility of feed-forward control in primary suspensions is also investigated. Finally, issues of stability, performance and limitation of the controller are discussed.
10

Advanced Numerical Approaches for Analysis of Vehicle Ride Comfort, Wheel Bearings and Steering Control

Mahala, Manoj Kumar January 2015 (has links) (PDF)
Suspension systems and wheels play a critical role in vehicle dynamics performance of a car in areas such as ride comfort and handling. Lumped parameter models (LPMs) are commonly used for assessing the performance of vehicle suspension systems. However, there is a lack of clarity with regard to the relative capabilities of different LPM configurations. A comprehensive comparative study of three most commonly used LPMs of increasing complexity has been carried out in the current work. The study reported here has yielded insights into the capabilities of the considered LPMs in predicting response time histories which may be used for assessing ride comfort. A shortcoming of available suspension system models appears to be in representation of harsh situations such as jounce movement which cause full compression of springs leading to ‘jerks’ manifested as high values of rate of change of acceleration of sprung mass riding on a wheel. In the current research work, a modified nonlinear quarter-car model is proposed to account for the contact force that results in jerk-type response. The numerical solution algorithm is validated through the simulation of an impact test on a car McPherson strut in a Drop Weight Impact Testing Tower developed in CAR Laboratory, CPDM. This is followed by a detailed comparison of HCM and QCM to examine their suitability for such analysis. For decades, wheel bearings in vehicles have been designed using simplified analytical approaches based on Hertz contact theory and test data. In the present work, a hybrid approach has been developed for assessing the load bearing capacity of a wheel ball bearing set. According to this approach, the amplitude of dynamic wheel load can be obtained from a lumped parameter analysis of a suspension system, which can then be used for detailed static finite element analysis of a wheel bearing system. The finite element modelling approach has been validated by successfully predicting the load bearing capacity of an SKF ball bearing set for an acceptable fatigue life. For the first time, using a powerful commercial explicit finite element analysis tool, a detailed dynamic analysis has been carried of a deep groove ball bearing with a rotating inner race. The analysis has led to a consistent representation of complex motions consisting of rotations and revolutions of rolling elements, and generated insights into the stresses developed in the various components such as balls and races. In conclusion, a simple yet effective fuzzy logic-based yaw control algorithm has been presented in the current research. According to this algorithm, two inputs i.e. a yaw rate error and a driver steering angle are used for generating an output in the form of an additive steering angle which potentially can aid a driver in avoiding straying from an intended path.

Page generated in 0.1404 seconds