• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An In-vivo Analysis of SLMAP Function in the Postnatal Mouse Myocardium

Rehmani, Taha January 2017 (has links)
SLMAP is a tail anchored membrane protein that alternatively splices to generate three isoforms, SLMAP1, SLMAP2 and SLMAP3. Previous studies in our lab have shown that the postnatal cardiac-specific overexpression of SLMAP1 results in intracellular vesicle expansion and enhanced endosomal recycling. I generated a postnatal cardiac-specific knockout model using the Cre-Lox system to nullify all three SLMAP isoforms and further evaluate its role in the mouse myocardium. SLMAP knockdown and knockout mouse hearts were analyzed with western blotting and qPCR. I found that only SLMAP3 was nullified and phenotypic evaluation through echocardiography indicated that young and old SLMAP3 knockout animals showed no remarkable changes in cardiac function. Furthermore, challenge with stressor isoproterenol had a similar response to wildtype and knockout mice in cardiac structure and function. Surprisingly the level of expression of SLMAP1 and SLMAP2 was maintained in the myocardium from SLMAP3 deficient mice. Interestingly the machinery involved in endosomal recycling was not impacted by the loss of SLMAP3. These data indicate that loss of SLMAP3 does not alter cardiac structure and function in the postnatal myocardium in the presence of SLMAP1 and SLMAP2.
2

Erkennung diagnostischer Frühmarker der Nierenfibrose beim Tiermodell des Alport-Syndroms mittels proteomischer Methoden / Detection of early diagnostic markers in an animal model of Alport syndrome with renal fibrosis via proteomics

Schmidt-Eylers, Imke 22 April 2013 (has links)
Das Alport-Syndrom ist eine erbliche, progredient verlaufende Nierenerkrankung, bei der es infolge von charakteristischen Veränderungen der glomerulären Basalmembran zu Hämaturie und Proteinurie kommt. Es gelangen Proteine in den Urin, welche die Erkrankung möglicherweise frühzeitig anzeigen können. In diesem Projekt soll der Urin von Wildtyp- und COL4A3-Knockout-Mäusen zum Zeitpunkt von 4,5 und 6 Wochen untersucht werden. Ziel ist es, diagnostische Proteinmarker zu finden, die im Urin von Alport-Mäusen klinisch relevant hochreguliert sind. Zur Erreichung dieses Ziels wird sich proteomischer Verfahren, Western-Blot und histologischer Schnitte bedient.
3

Hledání biologické role rodiny proteinů podobných Ddi1 / Deciphering the biological role of Ddi1-like protein family

Sivá, Monika January 2019 (has links)
Ddi1-like protein family has been recently raised into the spotlight by the scientific community due to its important roles in cellular homeostasis maintenance. It represents a specific group among shuttling proteins of the ubiquitin-proteasome system. When compared to other shuttles, Ddi1-like protein family members harbor a unique retroviral-protease like domain besides the conventional ubiquitin-like (UBL) domain and domains interacting with ubiquitin. In addition, a helical domain of Ddi (HDD) has been recently found in most of the orthologs. In this thesis, I focus on characterization of several members of Ddi1-like protein family, both on molecular level using NMR and in model mouse strains via a variety of biological methods. Solution structure of the UBL domain of Ddi1p of S. cerevisiae was solved and its characteristics were compared to those of the UBL domain of its human ortholog. Furthermore, we show that human DDI2 specifically binds to ubiquitin with its terminal domains, both the UBL and the UIM; however, with very low affinity in contrast to binding properties of its yeast counterpart. Our study also show that hDDI2 does not form a head-to-tail homodimer. Based on our structural studies, we hypothesize that human DDI2 might have evolved a different function compared to its yeast...

Page generated in 0.0334 seconds