• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 119
  • 42
  • 39
  • 18
  • 17
  • 14
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Augmentations and Rulings of Legendrian Links

Leverson, Caitlin June January 2016 (has links)
<p>For any Legendrian knot in R^3 with the standard contact structure, we show that the existence of an augmentation to any field of the Chekanov-Eliashberg differential graded algebra over Z[t,t^{-1}] is equivalent to the existence of a normal ruling of the front diagram, generalizing results of Fuchs, Ishkhanov, and Sabloff. We also show that any even graded augmentation must send t to -1.</p><p>We extend the definition of a normal ruling from J^1(S^1) given by Lavrov and Rutherford to a normal ruling for Legendrian links in #^k(S^1\times S^2). We then show that for Legendrian links in J^1(S^1) and #^k(S^1\times S^2), the existence of an augmentation to any field of the Chekanov-Eliashberg differential graded algebra over Z[t,t^{-1}] is equivalent to the existence of a normal ruling of the front diagram. For Legendrian knots, we also show that any even graded augmentation must send t to -1. We use the correspondence to give nonvanishing results for the symplectic homology of certain Weinstein 4-manifolds.</p> / Dissertation
92

Virtual Links with Finite Medial Bikei

Chien, Julien 01 January 2017 (has links)
This paper begins with a basic overview of the key concepts of classical and virtual knot theory. After introductions to concepts such as knot diagrams, Reidemeister moves, and virtual links, the paper discusses the bikei algebraic structure and the fundamental bikei. The paper describes an algorithm that converts fundamental bikei presentations to matrix representations, and then completes the resulting matrices. These completed matrices can return the value of two link invariants.
93

Nullification of Torus Knots and Links

Bettersworth, Zachary S 01 July 2016 (has links)
Knot nullification is an unknotting operation performed on knots and links that can be used to model DNA recombination moves of circular DNA molecules in the laboratory. Thus nullification is a biologically relevant operation that should be studied. Nullification moves can be naturally grouped into two classes: coherent nullification, which preserves the orientation of the knot, and incoherent nullification, which changes the orientation of the knot. We define the coherent (incoherent) nullification number of a knot or link as the minimal number of coherent (incoherent) nullification moves needed to unknot any knot or link. This thesis concentrates on the study of such nullification numbers. In more detail, coherent nullification moves have already been studied at quite some length. This is because the preservation of the previous orientation of the knot, or link, makes the coherent operation easier to study. In particular, a complete solution of coherent nullification numbers has been obtained for the torus knot family, (the solution of the torus link family is still an open question). In this thesis, we concentrate on incoherent nullification numbers, and place an emphasis on calculating the incoherent nullification number for the torus knot and link family. Unfortunately, we were unable to compute the exact incoherent nullification numbers for most torus knots. Instead, our main results are upper and lower bounds on the incoherent nullification number of torus knots and links. In addition we conjecture what the actual incoherent nullification number of a torus knot will be.
94

Adaptive knot location for spline approximation.

Mier Muth, Alberto Mauricio January 1976 (has links)
Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / Microfiche copy available in Archives and Engineering. / Includes bibliographical references. / M.S.
95

Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds

Burton, Stephan Daniel 02 July 2012 (has links)
Adams conjectured that unknotting tunnels of tunnel number 1 manifolds are always isotopic to a geodesic. We generalize this question to tunnel number n manifolds. We find that there exist complete hyperbolic structures and a choice of spine of a compression body with genus 1 negative boundary and genus n ≥ 3 outer boundary for which (n−2) edges of the spine self-intersect. We use this to show that there exist finite volume one-cusped hyperbolic manifolds with a system of n tunnels for which (n−1) of the tunnels are homotopic to geodesics arbitrarily close to self-intersecting. This gives evidence that the generalization of Adam's conjecture to tunnel number n ≥ 2 manifolds may be false.
96

Topologically massive Yang-Mills theory and link invariants

Yildirim, Tuna 01 December 2014 (has links)
In this thesis, topologically massive Yang-Mills theory is studied in the framework of geometric quantization. This theory has a mass gap that is proportional to the topological mass m. Thus, Yang-Mills contribution decays exponentially at very large distances compared to 1/m, leaving a pure Chern-Simons theory with level number k. The focus of this research is the near Chern-Simons limit of the theory, where the distance is large enough to give an almost topological theory, with a small contribution from the Yang-Mills term. It is shown that this almost topological theory consists of two copies of Chern-Simons with level number k/2, very similar to the Chern-Simons splitting of topologically massive AdS gravity model. As m approaches to infinity, the split parts add up to give the original Chern-Simons term with level k. Also, gauge invariance of the split CS theories is discussed for odd values of k. Furthermore, a relation between the observables of topologically massive Yang-Mills theory and Chern-Simons theory is obtained. It is shown that one of the two split Chern-Simons pieces is associated with Wilson loops while the other with 't Hooft loops. This allows one to use skein relations to calculate topologically massive Yang-Mills theory observables in the near Chern-Simons limit. Finally, motivated with the topologically massive AdS gravity model, Chern-Simons splitting concept is extended to pure Yang-Mills theory at large distances. It is shown that pure Yang-Mills theory acts like two Chern-Simons theories with level numbers k/2 and -k/2 at large scales. At very large scales, these two terms cancel to make the theory trivial, as required by the existence of a mass gap.
97

Relating Khovanov homology to a diagramless homology

McDougall, Adam Corey 01 July 2010 (has links)
A homology theory is defined for equivalence classes of links under isotopy in the 3-sphere. Chain modules for a link L are generated by certain surfaces whose boundary is L, using surface signature as the homological grading. In the end, the diagramless homology of a link is found to be equal to some number of copies of the Khovanov homology of that link. There is also a discussion of how one would generalize the diagramless homology theory (hence the theory of Khovanov homology) to links in arbitrary closed oriented 3-manifolds.
98

The (n)-Solvable Filtration of the Link Concordance Group and Milnor's mu-Invariaants

January 2011 (has links)
We establish several new results about the ( n )-solvable filtration, [Special characters omitted.] , of the string link concordance group [Special characters omitted.] . We first establish a relationship between ( n )-solvability of a link and its Milnor's μ-invariants. We study the effects of the Bing doubling operator on ( n )-solvability. Using this results, we show that the "other half" of the filtration, namely [Special characters omitted.] , is nontrivial and contains an infinite cyclic subgroup for links with sufficiently many components. We will also show that links modulo (1)-solvability is a nonabelian group. Lastly, we prove that the Grope filtration, [Special characters omitted.] of [Special characters omitted.] is not the same as the ( n )-solvable filtration.
99

Lower order solvability of links

Martin, Taylor 16 September 2013 (has links)
The n-solvable filtration of the link concordance group, defined by Cochran, Orr, and Teichner in 2003, is a tool for studying smooth knot and link concordance that yields important results in low-dimensional topology. We focus on the first two stages of the n-solvable filtration, which are the class of 0-solvable links and the class of 0.5-solvable links. We introduce a new equivalence relation on links called 0-solve equivalence and establish both an algebraic and a geometric characterization 0-solve equivalent links. As a result, we completely characterize 0-solvable links and we give a classification of links up to 0-solve equivalence. We relate 0-solvable links to known results about links bounding gropes and Whitney towers in the 4-ball. We then establish a sufficient condition for a link to be 0.5-solvable and show that 0.5-solvable links must have vanishing Sato-Levine invariants.
100

An Algorithm to Generate Two-Dimensional Drawings of Conway Algebraic Knots

Tung, Jen-Fu 01 May 2010 (has links)
The problem of finding an efficient algorithm to create a two-dimensional embedding of a knot diagram is not an easy one. Typically, knots with a large number of crossings will not nicely generate two-dimensional drawings. This thesis presents an efficient algorithm to generate a knot and to create a nice two-dimensional embedding of the knot. For the purpose of this thesis a drawing is “nice” if the number of tangles in the diagram consisting of half-twists is minimal. More specifically, the algorithm generates prime, alternating Conway algebraic knots in O(n) time where n is the number of crossings in the knot, and it derives a precise representation of the knot’s nice drawing in O(n) time (The rendering of the drawing is not O(n).). Central to the algorithm is a special type of rooted binary tree which represents a distinct prime, alternating Conway algebraic knot. Each leaf in the tree represents a crossing in the knot. The algorithm first generates the tree and then modifies such a tree repeatedly to reduce the number of its leaves while ensuring that the knot type associated with the tree is not modified. The result of the algorithm is a tree (for the knot) with a minimum number of leaves. This minimum tree is the basis of deriving a 4-regular plane map which represents the knot embedding and to finally draw the knot’s diagram.

Page generated in 0.0697 seconds