• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topological methods in quantum gravity

Starodubtsev, Artem January 2005 (has links)
The main technical problem with background independent approaches to quantum gravity is inapplicability of standard quantum field theory methods. New methods are needed which would be adapted to the basic principles of General Relativity. Topological field theory is a model which provides natural tools for background independent quantum gravity. It is exactly soluble and, at the same time, diffeomorphism invariant. Applications of topological field theory to quantum gravity include description of boundary states of quantum General Relativity, formulation of quantum gravity as a constrained topological field theory, and a new perturbation theory which uses topological field theory as a starting point. The later is the central theme of the thesis. Unlike the traditional perturbation theory it does not require splitting metric into a background and fluctuations, it is exactly diffeomorphism invariant order by order, and the coupling constant of this theory is dimensionless. We describe the basic ideas and techniques of this perturbation theory as well as inclusion of matter particles, boundary states, and other necessary tools for studying scattering problem in background independent quantum gravity.
2

Topological methods in quantum gravity

Starodubtsev, Artem January 2005 (has links)
The main technical problem with background independent approaches to quantum gravity is inapplicability of standard quantum field theory methods. New methods are needed which would be adapted to the basic principles of General Relativity. Topological field theory is a model which provides natural tools for background independent quantum gravity. It is exactly soluble and, at the same time, diffeomorphism invariant. Applications of topological field theory to quantum gravity include description of boundary states of quantum General Relativity, formulation of quantum gravity as a constrained topological field theory, and a new perturbation theory which uses topological field theory as a starting point. The later is the central theme of the thesis. Unlike the traditional perturbation theory it does not require splitting metric into a background and fluctuations, it is exactly diffeomorphism invariant order by order, and the coupling constant of this theory is dimensionless. We describe the basic ideas and techniques of this perturbation theory as well as inclusion of matter particles, boundary states, and other necessary tools for studying scattering problem in background independent quantum gravity.
3

Coherence for 3-dualizable objects

Araújo, Manuel January 2017 (has links)
A fully extended framed topological field theory with target in a symmetric monoidal n-catgeory C is a symmetric monoidal functor Z from Bord(n) to C, where Bord(n) is the symmetric monoidal n-category of n-framed bordisms. The cobordism hypothesis says that such field theories are classified by fully dualizable objects in C. Given a fully dualizable object X in C, we are interested in computing the values of the corresponding field theory on specific framed bordisms. This leads to the question of finding a presentation for Bord(n). In view of the cobordism hypothesis, this can be rephrased in terms of finding coherence data for fully dualizable objects in a symmetric monoidal n-category. We prove a characterization of full dualizability of an object X in terms of existence of a dual of X and existence of adjoints for a finite number of higher morphisms. This reduces the problem of finding coherence data for fully dualizable objects to that of finding coherence data for duals and adjoints. For n=3, and in the setting of strict symmetric monoidal 3-categories, we find this coherence data, and we prove the corresponding coherence theorems. The proofs rely on extensive use of a graphical calculus for strict monoidal 3-categories.
4

Notes on Some (0,2) Supersymmetric Theories in Two Dimensions

Wu, Ruoxu 05 June 2017 (has links)
This thesis is devoted to a discussion of two-dimensional theories with (0,2) supersymmetry. Examples of two-dimensional (0,2) gauged linear sigma models (GLSMs) are constructed for various spaces including Grassmannians, complete intersections in Grassmannians, and non-complete intersections such as Pfaffians. Generalizations of (2,2) Toda dual theories to (0,2) Toda-like theories are also discussed and some examples are given, including products of projective spaces and del Pezzo surfaces. Correlation functions are computed to show the examples are the correct mirror models. / Ph. D.
5

Topologically massive Yang-Mills theory and link invariants

Yildirim, Tuna 01 December 2014 (has links)
In this thesis, topologically massive Yang-Mills theory is studied in the framework of geometric quantization. This theory has a mass gap that is proportional to the topological mass m. Thus, Yang-Mills contribution decays exponentially at very large distances compared to 1/m, leaving a pure Chern-Simons theory with level number k. The focus of this research is the near Chern-Simons limit of the theory, where the distance is large enough to give an almost topological theory, with a small contribution from the Yang-Mills term. It is shown that this almost topological theory consists of two copies of Chern-Simons with level number k/2, very similar to the Chern-Simons splitting of topologically massive AdS gravity model. As m approaches to infinity, the split parts add up to give the original Chern-Simons term with level k. Also, gauge invariance of the split CS theories is discussed for odd values of k. Furthermore, a relation between the observables of topologically massive Yang-Mills theory and Chern-Simons theory is obtained. It is shown that one of the two split Chern-Simons pieces is associated with Wilson loops while the other with 't Hooft loops. This allows one to use skein relations to calculate topologically massive Yang-Mills theory observables in the near Chern-Simons limit. Finally, motivated with the topologically massive AdS gravity model, Chern-Simons splitting concept is extended to pure Yang-Mills theory at large distances. It is shown that pure Yang-Mills theory acts like two Chern-Simons theories with level numbers k/2 and -k/2 at large scales. At very large scales, these two terms cancel to make the theory trivial, as required by the existence of a mass gap.
6

A reduced tensor product of braided fusion categories over a symmetric fusion category

Wasserman, Thomas A. January 2017 (has links)
The main goal of this thesis is to construct a tensor product on the 2-category BFC-A of braided fusion categories containing a symmetric fusion category A. We achieve this by introducing the new notion of Z(A)-crossed braided categories. These are categories enriched over the Drinfeld centre Z(A) of the symmetric fusion category. We show that Z(A) admits an additional symmetric tensor structure, which makes it into a 2-fold monoidal category. ByTannaka duality, A= Rep(G) (or Rep(G; w)) for a finite group G (or finite super-group (G,w)). Under this identication Z(A) = VectG[G], the category of G-equivariant vector bundles over G, and we show that the symmetric tensor product corresponds to (a super version of) to the brewise tensor product. We use the additional symmetric tensor product on Z(A) to define the composition in Z(A)-crossed braided categories, whereas the usual tensor product is used for the monoidal structure. We further require this monoidal structure to be braided for the switch map that uses the braiding in Z(A). We show that the 2-category Z(A)-XBF is equivalent to both BFC=A and the 2-category of (super)-G-crossed braided categories. Using the former equivalence, the reduced tensor product on BFC-A is dened in terms of the enriched Cartesian product of Z(A)-enriched categories on Z(A)-XBF. The reduced tensor product obtained in this way has as unit Z(A). It induces a pairing between minimal modular extensions of categories having A as their Mueger centre.
7

Applications of gauged linear sigma models

Chen, Zhuo 17 May 2019 (has links)
This thesis is devoted to a study of applications of gauged linear sigma models. First, by constructing (0,2) analogues of Hori-Vafa mirrors, we have given and checked proposals for (0,2) mirrors to projective spaces, toric del Pezzo and Hirzebruch surfaces with tangent bundle deformations, checking not only correlation functions but also e.g. that mirrors to del Pezzos are related by blowdowns in the fashion one would expect. Also, we applied the recent proposal for mirrors of non-Abelian (2,2) supersymmetric two-dimensional gauge theories to examples of two-dimensional A-twisted gauge theories with exceptional gauge groups G_2 and E_8. We explicitly computed the proposed mirror Landau-Ginzburg orbifold and derived the Coulomb ring relations (the analogue of quantum cohomology ring relations). We also studied pure gauge theories, and provided evidence (at the level of these topologicalfield-theory-type computations) that each pure gauge theory (with simply-connected gauge group) flows in the IR to a free theory of as many twisted chiral multiplets as the rank of the gauge group. Last, we have constructed hybrid Landau-Ginzburg models that RG flow to a new family of non-compact Calabi-Yau threefolds, constructed as fiber products of genus g curves and noncompact Kahler threefolds. We only considered curves given as branched double covers of P^1. Our construction utilizes nonperturbative constructions of the genus g curves, and so provides a new set of exotic UV theories that should RG flow to sigma models on Calabi-Yau manifolds, in which the Calabi-Yau is not realized simply as the critical locus of a superpotential. / Doctor of Philosophy / This thesis is devoted to a study of vacua of supersymmetric string theory (superstring theory) by gauged linear sigma models. String theory is best known as the candidate to unify Einstein’s general relativity and quantum field theory. We are interested in theories with a symmetry exchanging bosons and fermions, known as supersymmetry. The study of superstring vacua makes it possible to connect string theory to the real world, and describe the Standard model as a low energy effective theory. Gauged linear sigma models are one of the most successful models to study superstring vacua by, for example, providing insights into the global structure of their moduli spaces. We will use gauged linear sigma models to study mirror symmetry and its heterotic generalization “(0, 2) mirror symmetry.” They are both world-sheet dualities relating different interpretations of the same (internal) superstring vacua. Mirror symmetry is a very powerful duality which exchanges classical and quantum effects. By studying mirror symmetry and (0, 2) mirror symmetry, we gain more knowledge of the properties of superstring vacua.
8

State sums in two dimensional fully extended topological field theories

Davidovich, Orit 01 June 2011 (has links)
A state sum is an expression approximating the partition function of a d-dimensional field theory on a closed d-manifold from a triangulation of that manifold. To consider state sums in completely local 2-dimensional topological field theories (TFT's), we introduce a mechanism for incorporating triangulations of surfaces into the cobordism ([infinity],2)-category. This serves to produce a state sum formula for any fully extended 2-dimensional TFT possibly with extra structure. We then follow the Cobordism Hypothesis in classifying fully extended 2-dimensional G-equivariant TFT's for a finite group G. These are oriented theories in which bordisms are equipped with principal G-bundles. Combining the mechanism mentioned above with our classification results, we derive Turaev's state sum formula for such theories. / text
9

Géométrie quantique dans les mousses de Spins : de la théorie topologique BF vers la relativité générale / Quantum geometry in Spin foams : from the topological BF theory towards general relativity

Bonzom, Valentin 23 September 2010 (has links)
La gravité quantique à boucles a fourni un cadre d’étude particulièrement bien adapté aux théories de jauge définies sans métrique fixe et invariante sous difféomorphismes. Les excitations fondamentales de cette quantification sont appelées réseaux de spins, et dans le contexte de la relativité générale donnent un sens à la géométrie quantique au niveau canonique. Les mousses de spins constituent une sorte d’intégrale de chemins adaptée aux réseaux de spins, et donc destinée à permettre le calcul des amplitudes de transition entre ces états. Cette quantification est particulièrement efficace pour les théories des champs topologiques, comme Yang-Mills 2d, la gravité 3d ou les théories BF, et des modèles ont aussi été proposés pour la gravité quantique en dimension 4.Nous discutons dans cette thèse différentes méthodes pour l’étude des modèles de mousses de spins.Nous présentons en particulier des relations de récurrence sur les amplitudes de mousses de spins. De manière générique, elles codent des symétries classiques au niveau quantique, et sont susceptible de permettre de faire le lien avec les contraintes hamiltoniennes. De telles relations s’interprètent naturellement en termes de déformations élémentaires sur des structures géométriques discrètes, telles que simplicielles. Une autre méthode intéressante consiste à explorer la façon dont on peut réécrire les modèles de mousses de spins comme des intégrales de chemins pour des systèmes de géométries sur réseau, en s’inspirant à la fois des modèles topologiques et du calcul de Regge. Cela aboutit à une vision très géométrique des modèles, et fournit des actions classiques sur réseau dont on étudie les points stationnaires. / Loop quantum gravity has provided us with a canonical framework especially devised for back-ground independent and diffeomorphism invariant gauge field theories. In this quantization the funda-mental excitations are called spin network states, and in the context of general relativity, they give ameaning to quantum geometry. Spin foams are a sort of path integral for spin network states, supposed to enable the computations of transition amplitudes between these states. The spin foam quantization has proved very efficient for topological field theories, like 2d Yang-Mills, 3d gravity or BF theories. Different models have also been proposed for 4-dimensional quantum gravity.In this PhD manuscript, I discuss several methods to study spin foam models. In particular, I present some recurrence relations on spin foam amplitudes, which generically encode classical symme-tries at the quantum level, and are likely to help fill the gap with the Hamiltonian constraints. These relations can be naturally interpreted in terms of elementary deformations of discrete geometric struc-tures, like simplicial geometries. Another interesting method consists in exploring the way spin foam models can be written as path integrals for systems of geometries on a lattice, taking inspiration from topological models and Regge calculus. This leads to a very geometric view on spin foams, and gives classical action principles which are studied in details.
10

Μελέτη των υπερσυμμετρικών θεωριών Chern-Simons σε τρεις χωροχρονικές διαστάσεις / The study of supersymmetric Chern-Simons theories in three space-time dimensions

Βολιώτης, Δημήτριος 31 January 2013 (has links)
Η παρούσα διπλωματική εργασία πραγματοποιήθηκε στο τμήμα Σωματιδιακής Φυσικής του Πανεπιστημίου Santiago de Compostela της Ισπανίας και αποτελεί τη μελέτη της υπερσυμμετρίας στις τρεις χωροχρονικές διαστάσεις. Έμφαση δίνεται σε θεωρίες που περιέχουν τον όρο Chern-Simons που παιζεί συμαντικό ρόλο στους τομείς έρευνας της θεωρητικής φυσικής. Αρχικά, εισάγουμε τις εισαγωγικές ένοιες της υπερσυμμετρίας στις τρεις διαστάσεις και ακολούθως μελέτουμε την Ν=1 ελάχιστη θεωρία με διάφορες φυσικές ποσότες που περιέχουν τον όρο Chern-Simons. Στην συνέχεια, μελετάμε τις ABJM θεωρίες και αποδεικνύουμε ότι είναι αναλλοίωτες κάτω από μετασχηματισμούς βαθμίδας. Τέλος υπολογίζουμε τις κβαντικές διορθώσεις στην διαταρακτική θεωρία Chern-Simons. / The present thesis took part in Department of Particle Physics of University of Santiago de Compostela, Spain, and is the study of supersymmetry in three spacetime dimensions. Emphasis is given to theories containing the Chern-Simons term that plays an important role in the research areas of theoretical physics. First, we introduce the notion of supersymmetry in three dimensions and then we study the N = 1 minimal theory with various physical quantitative containing the term Chern-Simons. Then, we study the ABJM theories and prove that they are invariant under gauge transformations. Finally we calculate the quantum corrections to the perturbative Chern-Simons theory.

Page generated in 0.0949 seconds