• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Computational Stylistics : mining Literary Texts for the Extraction of Characterizing Stylistic Patterns / De la stylistique computationnelle : fouille de textes littéraires pour l'extraction de motifs stylistiques caractérisants

Boukhaled, Mohamed Amine 13 September 2016 (has links)
Notre thèse se situe dans le domaine interdisciplinaire de la stylistique computationnelle, à savoir l'application des méthodes statistiques et computationnelles à l'étude du style littéraire. Historiquement, la plupart des travaux effectués en stylistique computationnelle se sont concentrés sur les aspects lexicaux. Dans notre thèse, l’accent est mis sur l'aspect syntaxique du style qui est beaucoup plus difficile à analyser étant donné sa nature abstraite. Comme contribution principale, dans cette thèse, nous travaillons sur une approche à l'étude stylistique computationnelle de textes classiques de littérature française d'un point de vue herméneutique, où découvrir des traits linguistiques intéressants se fait sans aucune connaissance préalable. Plus concrètement, nous nous concentrons sur le développement et l'extraction des motifs morphosyntaxiques. Suivant la ligne de pensée herméneutique, nous proposons un processus de découverte de connaissances pour la caractérisation stylistique accentué sur la dimension syntaxique du style et permettant d'extraire des motifs pertinents à partir d'un texte donné. Ce processus proposé consiste en deux étapes principales, une étape d'extraction de motifs séquentiels suivi de l'application de certaines mesures d'intérêt. En particulier, l'extraction de tous les motifs syntaxiques possibles d'une longueur donnée est proposée comme un moyen particulièrement utile pour extraire des caractéristiques intéressantes dans un scénario exploratoire. Nous proposons, évaluons et présentons des résultats sur les trois mesures d'intérêt proposées, basée chacune sur un raisonnement théorique linguistique et statistique différent. / The present thesis locates itself in the interdisciplinary field of computational stylistics, namely the application of statistical and computational methods to the study of literary style. Historically, most of the work done in computational stylistics has been focused on lexical aspects especially in the early decades of the discipline. However, in this thesis, our focus is put on the syntactic aspect of style which is quite much harder to capture and to analyze given its abstract nature. As main contribution, we work on an approach to the computational stylistic study of classic French literary texts based on a hermeneutic point of view, in which discovering interesting linguistic patterns is done without any prior knowledge. More concretely, we focus on the development and the extraction of complex yet computationally feasible stylistic features that are linguistically motivated, namely morpho-syntactic patterns. Following the hermeneutic line of thought, we propose a knowledge discovery process for the stylistic characterization with an emphasis on the syntactic dimension of style by extracting relevant patterns from a given text. This knowledge discovery process consists of two main steps, a sequential pattern mining step followed by the application of some interestingness measures. In particular, the extraction of all possible syntactic patterns of a given length is proposed as a particularly useful way to extract interesting features in an exploratory scenario. We propose, carry out an experimental evaluation and report results on three proposed interestingness measures, each of which is based on a different theoretical linguistic and statistical backgrounds.

Page generated in 0.0319 seconds