Spelling suggestions: "subject:"csrknowledge normalization"" "subject:"bothknowledge normalization""
1 |
Knowledge formalization and reuse in BIM-based mechanical, electrical and plumbing design coordination in new construction projects using data mining techniquesWang, Li, 1987- 24 February 2015 (has links)
In the Architecture, Engineering and Construction (AEC) industry, inadequate collaboration between project stakeholders and disciplines often leads to conflicts and interoperability issues. Research has been conducted in knowledge formalization to bridge the knowledge gaps and information silos. Formalizing construction knowledge is challenging to formalize because most construction knowledge implicitly resides in the minds of construction experts, which is difficult to represent in a formal and explicit manner. The proposed study is built upon previous research findings, and attempts to formalize tacit knowledge in Mechanical, Electrical and Plumbing (MEP) design coordination by capturing necessary information with a model-based information capture system and reasoning about the captured data with data mining techniques. The vision of this research is that the formalized knowledge can be used to provide guidance for early design review incorporating construction considerations, facilitate structured learning from past experience, as well as train novice engineers. In summary, this research has three main contributions. First, this research presents a formalized knowledge representation schema to capture process knowledge in design coordination, which was successfully implemented in a model-based knowledge capture system developed by the author. Second, a model-based knowledge capture system was developed to store clash information in the form of categorized features and link such categorized information directly to the relevant model elements, which can also facilitate organization and management of clashes and supports searching and grouping functions. A prototype system was developed as a plugin to a widely used BIM-based design coordination application and was demonstrated with project data gathered from three new construction projects in the United States. Third, this research applied data mining techniques for knowledge discovery and reuse in MEP design coordination. Classification models were developed to provide predicted solutions for identified clashes based on historical data. The classification algorithms that produced the best results were selected, which reached precision rates of over 70%. The effectiveness of the classification models was tested in a novice experiment. / text
|
2 |
Méthodologie d’élaboration d’un bilan de santé de machines de production pour aider à la prise de décision en exploitation : application à un centre d’usinage à partir de la surveillance des composants de sa cinématique / Machine health check methodology to help maintenance in operational condition : application to machine tool from its kinematic monitoringLaloix, Thomas 11 December 2018 (has links)
Ce travail de thèse a été initié par Renault, en collaboration avec le Centre de Recherche en Automatique de Nancy (CRAN), dans le but de poser les bases d'une méthodologie générique permettant d'évaluer l'état de santé de moyens de production. Cette méthodologie est issue d’une réflexion conjointe machine - produit en lien avec les exigences industrielles. La méthodologie proposée est basée sur une approche PHM (Prognostics and Health Management) et est structurée en cinq étapes séquentielles. Les deux premières étapes sont développées dans ce travail de thèse et en constituent les contributions scientifiques majeures. La première originalité représente la formalisation des connaissance issues de la relation machine-produit. Cette connaissance est basée sur l'extension de méthodes existantes telle que l’AMDEC et l’HAZOP. La formalisation des concepts de connaissance et de leurs interactions est matérialisée au moyen d'une méta-modélisation basée sur une modélisation UML (Unified Modelling Language). Cette contribution conduit à l'identification de paramètres pertinents à surveiller, depuis le niveau du composant jusqu'au niveau de la machine. Ces paramètres servent ensuite d’entrée au processus d'élaboration du bilan de santé machine, qui représente la deuxième originalité de la thèse. L'élaboration de ces indicateurs de santé est basée sur des méthodes d’agrégation, telle que l'intégrale de Choquet, soulevant la problématique de l'identification des capacités. De cette façon, il est proposé un modèle global d'optimisation de l'identification des capacités multi-niveaux du système à travers l’utilisation d’Algorithmes Génétiques. La faisabilité et l'intérêt d'une telle démarche sont démontrés sur le cas de la machine-outil située à l'usine RENAULT de Cléon / This PhD work has been initiated by Renault, in collaboration with Nancy Research Centre in Automatic Control (CRAN), with the aim to propose the foundation of a generic PHM-based methodology leading to machine health check regarding machine-product joint consideration and facing industrial requirements. The proposed PHM-based methodology is structured in five steps. The two first steps are developed in this PhD work and constitute the major contributions. The first originality represents the formalization of machine-product relationship knowledge based on the extension of well-known functioning/dysfunctioning analysis methods. The formalization is materialized by means of meta-modelling based on UML (Unified Modelling Language). This contribution leads to the identification of relevant parameters to be monitored, from component up to machine level. These parameters serve as a basis of the machine health check elaboration. The second major originality of the thesis aims at the definition of health check elaboration principles from the previously identified monitoring parameters and formalized system knowledge. Elaboration of such health indicators is based on Choquet integral as aggregation method, raising the issue of capacity identification. In this way, it is proposed a global optimization model of capacity identification according to system multi-level, by the use of Genetic Algorithms. Both contributions are developed with the objective to be generic (not only oriented on a specific class of equipment), according to industrial needs. The feasibility and the interests of such approach are shown on the case of machine tool located in RENAULT Cléon Factory
|
3 |
Génération de connaissances à l’aide du retour d’expérience : application à la maintenance industrielle / Knowledge generation using experience feedback : application to industrial maintenancePotes Ruiz, Paula Andrea 24 November 2014 (has links)
Les travaux de recherche présentés dans ce mémoire s’inscrivent dans le cadre de la valorisation des connaissances issues des expériences passées afin d’améliorer les performances des processus industriels. La connaissance est considérée aujourd'hui comme une ressource stratégique importante pouvant apporter un avantage concurrentiel décisif aux organisations. La gestion des connaissances (et en particulier le retour d’expérience) permet de préserver et de valoriser des informations liées aux activités d’une entreprise afin d’aider la prise de décision et de créer de nouvelles connaissances à partir du patrimoine immatériel de l’organisation. Dans ce contexte, les progrès des technologies de l’information et de la communication jouent un rôle essentiel dans la collecte et la gestion des connaissances. L’implémentation généralisée des systèmes d’information industriels, tels que les ERP (Enterprise Resource Planning), rend en effet disponible un grand volume d’informations issues des événements ou des faits passés, dont la réutilisation devient un enjeu majeur. Toutefois, ces fragments de connaissances (les expériences passées) sont très contextualisés et nécessitent des méthodologies bien précises pour être généralisés. Etant donné le potentiel des informations recueillies dans les entreprises en tant que source de nouvelles connaissances, nous proposons dans ce travail une démarche originale permettant de générer de nouvelles connaissances tirées de l’analyse des expériences passées, en nous appuyant sur la complémentarité de deux courants scientifiques : la démarche de Retour d’Expérience (REx) et les techniques d’Extraction de Connaissances à partir de Données (ECD). Le couplage REx-ECD proposé porte principalement sur : i) la modélisation des expériences recueillies à l’aide d’un formalisme de représentation de connaissances afin de faciliter leur future exploitation, et ii) l’application de techniques relatives à la fouille de données (ou data mining) afin d’extraire des expériences de nouvelles connaissances sous la forme de règles. Ces règles doivent nécessairement être évaluées et validées par les experts du domaine avant leur réutilisation et/ou leur intégration dans le système industriel. Tout au long de cette démarche, nous avons donné une place privilégiée aux Graphes Conceptuels (GCs), formalisme de représentation des connaissances choisi pour faciliter le stockage, le traitement et la compréhension des connaissances extraites par l’utilisateur, en vue d’une exploitation future. Ce mémoire s’articule en quatre chapitres. Le premier constitue un état de l’art abordant les généralités des deux courants scientifiques qui contribuent à notre proposition : le REx et les techniques d’ECD. Le second chapitre présente la démarche REx-ECD proposée, ainsi que les outils mis en œuvre pour la génération de nouvelles connaissances afin de valoriser les informations disponibles décrivant les expériences passées. Le troisième chapitre présente une méthodologie structurée pour interpréter et évaluer l’intérêt des connaissances extraites lors de la phase de post-traitement du processus d’ECD. Finalement, le dernier chapitre expose des cas réels d’application de la démarche proposée à des interventions de maintenance industrielle. / The research work presented in this thesis relates to knowledge extraction from past experiences in order to improve the performance of industrial process. Knowledge is nowadays considered as an important strategic resource providing a decisive competitive advantage to organizations. Knowledge management (especially the experience feedback) is used to preserve and enhance the information related to a company’s activities in order to support decision-making and create new knowledge from the intangible heritage of the organization. In that context, advances in information and communication technologies play an essential role for gathering and processing knowledge. The generalised implementation of industrial information systems such as ERPs (Enterprise Resource Planning) make available a large amount of data related to past events or historical facts, which reuse is becoming a major issue. However, these fragments of knowledge (past experiences) are highly contextualized and require specific methodologies for being generalized. Taking into account the great potential of the information collected in companies as a source of new knowledge, we suggest in this work an original approach to generate new knowledge based on the analysis of past experiences, taking into account the complementarity of two scientific threads: Experience Feedback (EF) and Knowledge Discovery techniques from Databases (KDD). The suggested EF-KDD combination focuses mainly on: i) modelling the experiences collected using a knowledge representation formalism in order to facilitate their future exploitation, and ii) applying techniques related to data mining in order to extract new knowledge in the form of rules. These rules must necessarily be evaluated and validated by experts of the industrial domain before their reuse and/or integration into the industrial system. Throughout this approach, we have given a privileged position to Conceptual Graphs (CGs), knowledge representation formalism chosen in order to facilitate the storage, processing and understanding of the extracted knowledge by the user for future exploitation. This thesis is divided into four chapters. The first chapter is a state of the art addressing the generalities of the two scientific threads that contribute to our proposal: EF and KDD. The second chapter presents the EF-KDD suggested approach and the tools used for the generation of new knowledge, in order to exploit the available information describing past experiences. The third chapter suggests a structured methodology for interpreting and evaluating the usefulness of the extracted knowledge during the post-processing phase in the KDD process. Finally, the last chapter discusses real case studies dealing with the industrial maintenance domain, on which the proposed approach has been applied.
|
4 |
Traitement de maquettes numériques pour la préparation de modèles de simulation en conception de produits à l'aide de techniques d'intelligence artificielle / A priori evaluation of simulation models preparation processes using artificial intelligence techniquesDanglade, Florence 07 December 2015 (has links)
Maitriser le triptyque coût-qualité-délai lors des différentes phases du Processus de Développement d’un Produit (PDP) dans un environnement de plus en plus concurrentiel est un enjeu majeur pour l’industrie. Le développement de nouvelles méthodes et de nouveaux outils pour adapter une représentation du produit à une activité du PDP est l’une des nombreuses pistes d’amélioration du processus et certainement l’une des plus prometteuses. Cela est particulièrement vrai dans le domaine du transfert de modèles de Conception Assistée par Ordinateur (CAO) vers des activités de simulations numériques. Actuellement, les méthodes et outils de préparation d’un modèle CAO original vers un modèle dédié à une activité existent. Cependant, ces processus de préparation sont des tâches complexes qui reposent souvent sur les connaissances des experts et sont peu formalisés, en particulier lorsque l’on considère des maquettes numériques riches comprenant plusieurs centaines de milliers de pièces. Pouvoir estimer a priori l’impact de la préparation de la maquette numérique sur le résultat de la simulation permettrait d’identifier dès le début le meilleur processus et assurerait une meilleure maitrise des processus et des coûts de préparation. Cette thèse a pour objectif de relever ce défi en utilisant des techniques d’intelligence artificielles capables d'imiter et de prévoir un comportement à partir d'exemples judicieusement choisis. L’idée principale est d’utiliser des exemples de préparation de maquettes numériques comme entrées d’algorithmes d’apprentissage pour configurer des estimateurs de la performance d’un processus. Lorsqu’un nouveau cas se présente, ces estimateurs pourront alors prédire a priori l’impact de la préparation sur le résultat de l’analyse sans avoir à la réaliser. Afin d'atteindre cet objectif, une méthode a été développée pour construire une base d’exemples représentatifs, identifier les variables d’entrée et de sortie déterminantes et configurer des modèles d’apprentissage. La performance d’un processus de préparation sera évaluée à l’aide de critères tels que des coûts de préparation, des coûts de simulation et des erreurs sur le résultat de l’analyse dues à la simplification des modèles CAO. Ces critères seront les données de sortie des algorithmes d’apprentissage. Le premier challenge de l’approche proposée est d’extraire les données des modèles 3D complétées par des données relatives au cas de simulation qui caractérisent au mieux un processus de préparation , puis d’identifier les variables explicatives les plus déterminantes. Un autre challenge est de configurer des modèles d’apprentissage capables d’évaluer avec une bonne précision la qualité d’un processus malgré un nombre limité d’exemples de processus de préparation et de données disponibles (seules les données relatives aux modèles CAO originaux, aux cas de simulation sont connues pour un nouveau cas). Au final, l’estimateur de la performance d’un processus aidera les analystes dans le choix d'opérations de préparation de modèles CAO. Cela ne les dispensera pas de la simulation mais permettra d'obtenir plus rapidement un modèle préparé de meilleure qualité. Les techniques d’intelligence artificielles utilisées seront des classifieurs de type réseaux de neurones ou arbres de décision. L’approche proposée sera appliquée à la préparation de modèles CAO riches pour l’analyse CFD. / Controlling the well-known triptych costs, quality and time during the different phases of the Product Development Process (PDP) is an everlasting challenge for the industry. Among the numerous issues that are to be addressed, the development of new methods and tools to adapt to the various needs the models used all along the PDP is certainly one of the most challenging and promising improvement area. This is particularly true for the adaptation of CAD (Computer-Aided Design) models to CAE (Computer-Aided Engineering) applications. Today, even if methods and tools exist, such a preparation phase still requires a deep knowledge and a huge amount of time when considering Digital Mock-Up (DMU) composed of several hundreds of thousands of parts. Thus, being able to estimate a priori the impact of DMU preparation process on the simulation results would help identifying the best process right from the beginning, and this will ensure a better control of processes and preparation costs. This thesis addresses such a difficult problem and uses Artificial Intelligence (AI) techniques to learn and accurately predict behaviors from carefully selected examples. The main idea is to identify rules from these examples used as inputs of learning algorithms. Once those rules obtained, they can be used as estimators to be applied a priori on new cases for which the impact of a preparation process can be estimated without having to perform it. To reach this objective, a method to build a representative database of examples has been developed, the right input and output variables have been identified, then the learning model and its associated control parameters have been tuned. The performance of a preparation process is assessed by criteria like preparation costs, analysis costs and the errors induced by the simplifications on the analysis results. The first challenge of the proposed approach is to extract and select most relevant input variables from the original and 3D prepared models, which are completed with data characterizing the preparation processes. Another challenge is to configure learning models able to assess with good accuracy the quality of a process, despite a limited number of examples of preparation processes and data available (the only data known to a new case are the data that characterize the original CAD models and simulation case). In the end, the estimator of the process’ performance will help analysts in the selection of CAD model preparation operations. This does not exempt the analysts to make the numerical simulation. However, this will get faster a simplified model of best quality. The rules linking the output variables to the input ones are obtained using AI techniques such as well-known neural networks and decision trees. The proposed approach is illustrated and validated on industrial examples in the context of CFD simulations.
|
Page generated in 0.0916 seconds