• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Field-responsive colloidal assemblies defined by magnetic anisotropy

Steinbach, Gabi, Schreiber, Michael, Nissen, Dennis, Albrecht, Manfred, Novak, Ekaterina, Sánchez, Pedro A., Kantorovich, Sofia S., Gemming, Sibylle, Erbe, Artur 27 April 2020 (has links)
Particle dispersions provide a promising tool for the engineering of functional materials that exploit self-assembly of complex structures. Dispersion made from magnetic colloidal particles is a great choice; they are biocompatible and remotely controllable among many other advantages. However, their dominating dipolar interaction typically limits structural complexity to linear arrangements. This paper shows how a magnetostatic equilibrium state with noncollinear arrangement of the magnetic moments, as reported for ferromagnetic Janus particles, enables the controlled self-organization of diverse structures in two dimensions via constant and low-frequency external magnetic fields. Branched clusters of staggered chains, compact clusters, linear chains, and dispersed single particles can be formed and interconverted reversibly in a controlled way. The structural diversity is a consequence of both the inhomogeneity and the spatial extension of the magnetization distribution inside the particles. We draw this conclusion from calculations based on a model of spheres with multiple shifted dipoles. The results demonstrate that fundamentally new possibilities for responsive magnetic materials can arise from interactions between particles with a spatially extended, anisotropic magnetization distribution.

Page generated in 0.0979 seconds