Spelling suggestions: "subject:"kontinuitätsgleichung"" "subject:"kontinuitätsgleichungen""
1 |
Arbitrary Lagrangian-Eulerian Discontinous Galerkin methods for nonlinear time-dependent first order partial differential equations / Arbitrary Lagrangian-Eulerian Discontinous Galerkin-Methode für nichtlineare zeitabhängige partielle Differentialgleichungen erster OrdnungSchnücke, Gero January 2016 (has links) (PDF)
The present thesis considers the development and analysis of arbitrary Lagrangian-Eulerian
discontinuous Galerkin (ALE-DG) methods with time-dependent approximation spaces for
conservation laws and the Hamilton-Jacobi equations.
Fundamentals about conservation laws, Hamilton-Jacobi equations and discontinuous Galerkin
methods are presented. In particular, issues in the development of discontinuous Galerkin (DG)
methods for the Hamilton-Jacobi equations are discussed.
The development of the ALE-DG methods based on the assumption that the distribution of
the grid points is explicitly given for an upcoming time level. This assumption allows to construct a time-dependent local affine linear mapping to a reference cell and a time-dependent
finite element test function space. In addition, a version of Reynolds’ transport theorem can be
proven.
For the fully-discrete ALE-DG method for nonlinear scalar conservation laws the geometric
conservation law and a local maximum principle are proven. Furthermore, conditions for slope
limiters are stated. These conditions ensure the total variation stability of the method. In addition, entropy stability is discussed. For the corresponding semi-discrete ALE-DG method,
error estimates are proven. If a piecewise $\mathcal{P}^{k}$ polynomial approximation space is used on the reference cell, the sub-optimal $\left(k+\frac{1}{2}\right)$ convergence for monotone fuxes and the optimal $(k+1)$ convergence for an upwind flux are proven in the $\mathrm{L}^{2}$-norm. The capability of the method is shown by numerical examples for nonlinear conservation laws.
Likewise, for the semi-discrete ALE-DG method for nonlinear Hamilton-Jacobi equations, error
estimates are proven. In the one dimensional case the optimal $\left(k+1\right)$ convergence and in the two dimensional case the sub-optimal $\left(k+\frac{1}{2}\right)$ convergence are proven in the $\mathrm{L}^{2}$-norm, if a piecewise $\mathcal{P}^{k}$ polynomial approximation space is used on the reference cell. For the fullydiscrete method, the geometric conservation is proven and for the piecewise constant forward Euler step the convergence of the method to the unique physical relevant solution is discussed. / Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Analyse von arbitrar Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) Methoden mit zeitabhängigen Testfunktionen Räumen für Erhaltungs- und Hamilton-Jacobi Gleichungen.
Grundlagen über Erhaltungsgleichungen, Hamilton-Jacobi Gleichungen und discontinuous Galerkin Methoden werden präsentiert. Insbesondere werden Probleme bei der Entwicklung von discontinuous Galerkin Methoden für die Hamilton-Jacobi Gleichungen untersucht.
Die Entwicklung der ALE-DG Methode basiert auf der Annahme, dass die Verteilung der Gitterpunkte zu einem kommenden Zeitpunkt explizit gegeben ist. Diese Annahme ermöglicht die Konstruktion einer zeitabhängigen lokal affin-linearen Abbildung auf eine Referenzzelle und eines zeitabhängigen Testfunktionen Raums. Zusätzlich kann eine Version des Reynolds’schen Transportsatzes gezeigt werden.
Für die vollständig diskretisierte ALE-DG Methode für nichtlineare Erhaltungsgleichungen werden der geometrischen Erhaltungssatz und ein lokales Maximumprinzip bewiesen. Des Weiteren werden Bedingungen für Limiter angegeben. Diese Bedingungen sichern die Stabilität der Methode im Sinne der totalen Variation. Zusätzlich wird die Entropie-Stabilität der Methode diskutiert. Für die zugehörige semi-diskretisierte ALE-DG Methode werden Fehlerabschätzungen gezeigt. Wenn auf der Referenzzelle ein Testfunktionen Raum, der stückweise Polynome vom Grad $k$ enthält verwendet wird, kann für einen monotonen Fluss die suboptimale Konvergenzordnung $\left(k+\frac{1}{2}\right)$ und für einen upwind Fluss die optimale Konvergenzordnung $\left(k+1\right)$ in der $\mathrm{L}^{2}$-Norm gezeigt werden. Die Leistungsfähigkeit der Methode wird anhand numerischer
Beispiele für nichtlineare Erhaltungsgleichungen untersucht.
Ebenso werden für die semi-diskretisierte ALE-DG Methode für nichtlineare Hamilton-Jacobi
Gleichungen Fehlerabschätzungen gezeigt. Wenn auf der Referenzzelle ein Testfunktionen
Raum, der stückweise Polynome vom Grad k enthält verwendet wird, kann im eindimensionalen
Fall die optimale Konvergenzordnung $\left(k+1\right)$ und im zweidimensionalen Fall die suboptimale Konvergenzordnung $\left(k+\frac{1}{2}\right)$ in der $\mathrm{L}^{2}$-Norm gezeigt werden. Für die vollständig diskretisierte ALE-DG Methode werden der geometrischen Erhaltungssatz bewiesen und für die stückweise konstante explizite Euler Diskretisierung wird die Konvergenz gegen die eindeutige physikalisch relevante Lösung diskutiert.
|
Page generated in 0.0581 seconds