• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Ruled Surfaces in three-dimensional Minkowski Space

Shonoda, Emad N. Naseem 22 December 2010 (has links) (PDF)
In a Minkowski three dimensional space, whose metric is based on a strictly convex and centrally symmetric unit ball , we deal with ruled surfaces Φ in the sense of E. Kruppa. This means that we have to look for Minkowski analogues of the classical differential invariants of ruled surfaces in a Euclidean space. Here, at first – after an introduction to concepts of a Minkowski space, like semi-orthogonalities and a semi-inner-product based on the so-called cosine-Minkowski function - we construct an orthogonal 3D moving frame using Birkhoff’s left-orthogonality. This moving frame is canonically connected to ruled surfaces: beginning with the generator direction and the asymptotic plane of this generator g we complete this flag to a frame using the left-orthogonality defined by ; ( is described either by its supporting function or a parameter representation). The plane left-orthogonal to the asymptotic plane through generator g(t) is called Minkowski central plane and touches Φ in the striction point s(t) of g(t). Thus the moving frame defines the Minkowski striction curve S of the considered ruled surface Φ similar to the Euclidean case. The coefficients occurring in the Minkowski analogues to Frenet-Serret formulae of the moving frame of Φ in a Minkowski space are called “M-curvatures” and “M-torsions”. Here we essentially make use of the semi-inner product and the sine-Minkowski and cosine-Minkowski functions. Furthermore we define a covariant differentiation in a Minkowski 3-space using a new vector called “deformation vector” and locally measuring the deviation of the Minkowski space from a Euclidean space. With this covariant differentiation it is possible to declare an “M-geodesicc parallelity” and to show that the vector field of the generators of a skew ruled surface Φ is an M-geodesic parallel field along its Minkowski striction curve s. Finally we also define the Pirondini set of ruled surfaces to a given surface Φ. The surfaces of such a set have the M-striction curve and the strip of M-central planes in common
2

On Ruled Surfaces in three-dimensional Minkowski Space

Shonoda, Emad N. Naseem 13 December 2010 (has links)
In a Minkowski three dimensional space, whose metric is based on a strictly convex and centrally symmetric unit ball , we deal with ruled surfaces Φ in the sense of E. Kruppa. This means that we have to look for Minkowski analogues of the classical differential invariants of ruled surfaces in a Euclidean space. Here, at first – after an introduction to concepts of a Minkowski space, like semi-orthogonalities and a semi-inner-product based on the so-called cosine-Minkowski function - we construct an orthogonal 3D moving frame using Birkhoff’s left-orthogonality. This moving frame is canonically connected to ruled surfaces: beginning with the generator direction and the asymptotic plane of this generator g we complete this flag to a frame using the left-orthogonality defined by ; ( is described either by its supporting function or a parameter representation). The plane left-orthogonal to the asymptotic plane through generator g(t) is called Minkowski central plane and touches Φ in the striction point s(t) of g(t). Thus the moving frame defines the Minkowski striction curve S of the considered ruled surface Φ similar to the Euclidean case. The coefficients occurring in the Minkowski analogues to Frenet-Serret formulae of the moving frame of Φ in a Minkowski space are called “M-curvatures” and “M-torsions”. Here we essentially make use of the semi-inner product and the sine-Minkowski and cosine-Minkowski functions. Furthermore we define a covariant differentiation in a Minkowski 3-space using a new vector called “deformation vector” and locally measuring the deviation of the Minkowski space from a Euclidean space. With this covariant differentiation it is possible to declare an “M-geodesicc parallelity” and to show that the vector field of the generators of a skew ruled surface Φ is an M-geodesic parallel field along its Minkowski striction curve s. Finally we also define the Pirondini set of ruled surfaces to a given surface Φ. The surfaces of such a set have the M-striction curve and the strip of M-central planes in common

Page generated in 0.1278 seconds