• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 43
  • 43
  • 10
  • Tagged with
  • 278
  • 150
  • 118
  • 97
  • 97
  • 97
  • 36
  • 33
  • 33
  • 32
  • 27
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Skalenübergreifende Modellierung und Simulation des mechanischen Verhaltens von textilverstärktem Polypropylen unter Nutzung der XFEM

Kästner, Markus 04 December 2009 (has links)
Die Arbeit beschreibt die skalenübergreifende Modellierung und Simulation des Werkstoffverhaltens von Faser-Kunststoff-Verbunden mit textiler Verstärkungsstruktur, die ausgehend von den konstitutiven Eigenschaften der Verbundbestandteile (Mikroskala) und ihrer geometrischen Anordnung im Verbund (Mesoskala) die rechnerische Vorhersage des effektiven Materialverhaltens des Verbundes (Makroskala) ermöglicht. Neben Schädigungsprozessen beeinflusst insbesondere das dehnratenabhängige Materialverhalten der polymeren Matrix das mechanische Verhalten des Verbundes. Dieser Einfluss wird anhand verschiedener Glasfaser-Polypropylen-Verbunde numerisch untersucht. Ein viskoplastisches Materialmodell bildet dabei das nichtlineare Materialverhalten von Polypropylen ab. Die Modellierung der textilen Verstärkungsstruktur erfolgt durch Anwendung der erweiterten Finiten-Elemente-Methode (XFEM). Anhand des Vergleichs von rechnerisch und experimentell gewonnenen Ergebnissen erfolgt schließlich die Verifikation der vorgeschlagenen Modellierungsstrategie. / This contribution covers the trans-scale modelling and simulation of the mechanical behaviour of textile-reinforced polymers. Starting from the material properties of the individual constituents (micro-scale) and their geometrical arrangement (meso-scale), the effective material behaviour of the composite (macro-scale) is numerically predicted. In addition to damage processes, the inelastic deformation behaviour of the composite is influenced by the strain-rate dependent material behaviour of the polymeric matrix. This influence is numerically investigated for different glass-fibre-polypropylene composites. A viscoplastic material model accounts for the nonlinear mechanical behaviour of polypropylene. The complex textile reinforcement is modelled by the eXtended finite element method (XFEM). A comparison of computed and experimental results allows for the verification of the proposed modelling strategy.
222

Multiaxiale Gelege auf Basis der Kettenwirktechnik – Technologie für Mehrschichtverbunde mit variabler Lagenanordnung

Hausding, Jan 17 March 2010 (has links)
Mit multiaxialen Gelegen auf Basis der Kettenwirktechnik stehen hervorragende textile Halbzeuge für die Weiterverarbeitung als Verstärkungskomponente in Faser-Kunststoff-Verbunden zur Verfügung. Die bisherige Konfiguration der für die Herstellung dieser Textilien verwendeten Nähwirkmaschinen führt verfahrensbedingt zu einem unsymmetrischen Produktaufbau mit üblicherweise nur einer Fadenlage in Gelegelängsrichtung und ebenso zu Einschränkungen bei der Anordnung des Bindefadens im Textil. Durch die Erweiterung des Nähwirkprozesses wird es möglich, Nähwirkstoffe mit einer beliebigen Abfolge der Einzellagen herzustellen, zum Beispiel in symmetrischer Anordnung. Die neuen Varianten der Lagenanordnung und der Bindungskonstruktion bilden den Ausgangspunkt für die Produktentwicklung am Beispiel zweier Anwendungen aus den Bereichen der Faser-Kunststoff-Verbunde und des textilbewehrten Betons. Hier wird deutlich, dass über die Herstellung symmetrischer Gelege hinaus der Einsatz des erweiterten Wirkprozesses die Eigenschaften der Gelege und der Endprodukte vorteilhaft beeinflussen kann. Aus den untersuchten Beispielen und grundsätzlichen Betrachtungen leitet sich ab, unter welchen maschinentechnischen Voraussetzungen der Einsatz des erweiterten Wirkprozesses sinnvoll ist. Es wird ein Konzept entwickelt, auf dessen Grundlage Nähwirkstoffe mit variabler Lagenanordnung auf Nähwirkmaschinen gefertigt werden können. / Multiaxial multi-ply fabrics made by warp knitting are excellently suited for the application in fiber reinforced composites. The usual configuration of the stitch-bonding machines, which are used to produce these fabrics, necessarily leads to composite laminates with an asymmetric layer arrangement and only one layer of yarns in the zero degree direction of the fabric. The variability of patterning with the binding yarn is also limited. By completing the stitch-bonding process with an additional work step it is possible to produce stitch-bonded fabrics without any restrictions concerning the arrangement of the individual layers in the fabric, for example with a symmetric composition. This is the basis for the development of two exemplary products in the fields of textile reinforced plastics and textile reinforced concrete. It can be shown that the application of the extended stitch-bonding process is advantageous beyond the layer arrangement, positively affecting the mechanical properties of the fabric and the composite. From these examples, conclusions are drawn regarding the configuration of future stitch-bonding machines.
223

Untersuchungen zur zerstörungsfreien Prüfung von CFK-Bauteilen für die fertigungsbegleitende Qualitätssicherung im Automobilbau

Kochan, Antje 17 February 2011 (has links)
Ein großer Vorteil von Kunststoffbauteilen ist neben funktionellen Vorzügen die Kosten- und Gewichtsreduzierung durch integrale Gestaltungsmöglichkeiten. Es können Geometrien umgesetzt werden, die mit metallischen Werkstoffen nur unter hohem Aufwand realisierbar sind. Insbesondere im Bereich der Faser-Kunststoff-Verbunde (FKV) gibt es hohen Forschungsbedarf hinsichtlich Reduzierung von Herstellungskosten, Erhöhung der Langlebigkeit aber auch der Reparaturfähigkeit. Die Erkennung von Defekten ist dabei eine grundlegende Voraussetzung. Für einen FKV-Serieneinsatz im Automobilbau gibt es jedoch kein bekanntes und ausreichendes Prüfkonzept der Schadenserkennung für die geforderten Stückzahlen. Die aus der Luft- und Raumfahrt bekannten Methoden lassen sich aufgrund ihres hohen apparativen Aufwandes und der eingeschränkten Tauglichkeit bezüglich geometrisch komplexer Bauteile nicht unmittelbar übernehmen. Es bestehen andere Anforderungen an ein Prüfkonzept für FKV-Bauteile im Automobilbau. Im Rahmen dieser Arbeit wurden zerstörungsfreie Prüfmethoden hinsichtlich ihrer Eignung zur Detektion nicht sichtbarer Schäden systematisch untersucht und bewertet. Der Fokus lag dabei auf Bauteilen aus kohlenstofffaserverstärkten Kunststoffen des Automobils, die sowohl eine flächige als auch eine mehrfach gekrümmte Bauteilstruktur mit nicht-homogenen Wanddicken aufweisen können. In Abhängigkeit von der Art der Schädigung, etwa Einschlüsse, Zwischenfaserrisse oder Delaminationen wurden die unterschiedlichen Verfahren vergleichend in Hinblick auf Detektionssicherheit, -grenzen und Einschränkungen durch gegebene geometrische sowie werkstoffliche Bauteilausführungen bewertet und ein Konzept für eine fertigungsbegleitende Qualitätssicherung entwickelt.
224

Zur werkstoffgerechten Gestaltung und Auslegung hybrider Antriebswellen in Metall/Faser-Kunststoff-Verbund-Bauweise

Spitzer, Sebastian 01 June 2022 (has links)
Derzeitige Entwicklungen auf dem Gebiet der Antriebstechnik sind einerseits geprägt durch stetig steigende Anforderungen an die Leistungsfähigkeit und Wirtschaftlichkeit technischer Erzeugnisse und andererseits durch eine zunehmende Verkürzung der Entwicklungs- und Produktlebenszyklen. Faser-Kunststoff-Verbunde (FKV) bieten in diesem Zusammenhang aufgrund ihrer herausragenden mechanischen Eigenschaften bei gleichzeitig hoher Flexibilität ein außergewöhnliches Potential für den Einsatz in Antriebswellen. Im Bereich der Lasteinleitungssysteme für Antriebswellen in Metall/Faser-Kunststoff-Verbund-Bauweise werden umfassende Untersuchungen zum Schädigungs- und Versagensverhalten bei Torsionsbelastung vorangetrieben. Eine praxistaugliche Methode zur effizienten Gestaltung und Auslegung derartiger hybrider Antriebswellen in Metall/Faser-Kunststoff-Verbund-Bauweise ist derzeit jedoch nicht verfügbar. In der vorliegenden Arbeit wird eine Vorgehensweise zur Erarbeitung praxistauglicher und werkstoffgerechter Gestaltungs- und Auslegungshinweise für hybride Antriebswellen in Metall/Faser-Kunststoff-Verbund-Bauweise am Beispiel der Pinverbindung erarbeitet. Dafür werden an der Pinverbindung die auftretenden Schädigungs- und Versagensphänomene bei der Einleitung von mechanischen Lasten identifiziert und modellhaft-experimentell untersucht. Basierend auf den dabei gewonnenen Erkenntnissen werden im Ingenieuralltag einsetzbare Gestaltungs- und Auslegungshinweise abgeleitet.:1 Einleitung 1 1.1 Zielstellung und Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Literaturübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Struktur und Schädigungsverhalten der Pinverbindung unter Torsionslast 11 2.1 Die Pinverbindung als Lasteinleitung in Faserverbund-Antriebswellen . 11 2.2 Fertigungstechnologie und Verbundstruktur . . . . . . . . . . . . . . . 14 2.3 Verformungs- und Schädigungsvorgänge im Lasteinleitungsbereich . . . 23 3 Numerische Beanspruchungsanalyse der Gesamtverbindung 29 3.1 Modellbeschreibung und Simulationsplanung . . . . . . . . . . . . . . . 30 3.2 Ergebnisdarstellung und -interpretation . . . . . . . . . . . . . . . . . . 32 3.3 Zusammenfassende Betrachtungen . . . . . . . . . . . . . . . . . . . . 44 4 Experimentelle Schädigungsanalyse und Kennwertermittlung 46 4.1 Planung und Spezifikation der Strukturversuche . . . . . . . . . . . . . 46 4.2 Prüfkörperfertigung und Versuchsdurchführung . . . . . . . . . . . . . 47 4.3 Verhalten der Pinverbindung unter Torsionslast . . . . . . . . . . . . . 50 4.4 Ermittlung technologiespezifischer Kenngrößen . . . . . . . . . . . . . . 59 4.5 Zusammenfassende Betrachtungen . . . . . . . . . . . . . . . . . . . . . 63 5 Numerische Versagensanalyse 67 5.1 Makroskopische Versagensanalyse der metallischen Lasteinleitung . . . 67 5.1.1 Werkstoffmodellierung . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.2 Modellierung der Gesamtstruktur . . . . . . . . . . . . . . . . . 70 5.1.3 Schädigungsanalyse der metallischen Lasteinleitung . . . . . . . 72 5.1.4 Parametervariation und -analyse . . . . . . . . . . . . . . . . . . 75 5.2 Mesoskopische Versagensanalyse der Faserverbund-Welle . . . . . . . . 79 5.2.1 Skalenübergreifendes FE-Modell . . . . . . . . . . . . . . . . . . 79 5.2.2 Anstrengungen des Laminates im Pineinflussbereich und im freien Wellenbereich . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Ergebnisinterpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6 Schädigungs- und Versagensbedingungen und Interaktionsanalyse 90 6.1 Relevante Schädigungs- und Versagensmoden und korrelierende Parameter 90 6.2 Formulierung der Versagensbedingungen . . . . . . . . . . . . . . . . . 91 6.3 Parameterinteraktionsanalyse . . . . . . . . . . . . . . . . . . . . . . . 95 7 Praxisgerechte Gestaltungs- und Auslegungshinweise 97 7.1 Gestaltungs- und Auslegungsprozess . . . . . . . . . . . . . . . . . . . . 97 7.1.1 Phase 1: Gestaltung und Auslegung der Welle . . . . . . . . . . 99 7.1.2 Phase 2: Gestaltung und Auslegung der Nabe . . . . . . . . . . 102 7.1.3 Phase 3: Auslegung der Pins . . . . . . . . . . . . . . . . . . . . 109 7.2 Exemplarische Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . . 109 8 Zusammenfassung 121 Literaturverzeichnis 123 A Anhang 137 A.1 Experimentelle Schädigungsanalyse . . . . . . . . . . . . . . . . . . . . 137 A.2 Numerische Schädigungsanalyse . . . . . . . . . . . . . . . . . . . . . . 142 A.3 Ergänzungen zur exemplarischen Vorgehensweise . . . . . . . . . . . . . 145 A.4 Ingenieurschaubilder und -tabellen . . . . . . . . . . . . . . . . . . . . 149
225

Entwicklung von Methoden zur Beurteilung von Verschleiß an textilen Silokonstruktionen durch Schüttgüter

Müller, Andreas 15 September 2023 (has links)
In der vorliegenden Arbeit wird der abrasive Verschleiß von Textilsilos näher betrachtet. Ziel der Untersuchungen ist die Auslegung eines geeigneten Prüfstands, um die Eignung verschiedener textiler Flächenelemente für den Einsatz als Silowandung zu prüfen. Es werden zunächst die unterschiedlichen etablierten physikalischen Verschleiß-Prüfungen vorgestellt und an Hand der Stand der Technik eine eigene Prüfvorrichtung entwickelt. Anschließend werden die charakteristischen Kennwerte der ausgewählten Schüttgüter und textilen Proben ermittelt. Verschiedene Schüttgut-Textil Kombinationen werden in der neuen Prüfvorrichtung getestet und anhand verschiedener Auswertemethoden die damit ermittelten Messwerte auf Plausibilität geprüft.:1 Einleitung und Zielstellung 2 Wissenschaftlich-technische Grundlagen der Schüttgutlagerung in Silos 3 Präzisierung der Aufgabenstellung 4 Siloauslegung in Anlehnung an DIN EN 1991-4 5 Experimentelle Untersuchungen 6 Versuchsdurchführung und Auswertung 7 Zusammenfassung und Ausblick / In the present work, the abrasive wear of textile silos is examined in more detail. The aim of the investigations is the design of a suitable test bench to test the suitability of various textile surface elements for use as silo walls. First, the various established physical wear tests are presented and a separate test device is developed on the basis of the state of the art. Subsequently, the characteristic values of the selected bulk materials and textile samples are determined. Various bulk material-textile combinations are tested in the new test device. The measured values determined with it are checked for plausibility using various evaluation methods.:1 Einleitung und Zielstellung 2 Wissenschaftlich-technische Grundlagen der Schüttgutlagerung in Silos 3 Präzisierung der Aufgabenstellung 4 Siloauslegung in Anlehnung an DIN EN 1991-4 5 Experimentelle Untersuchungen 6 Versuchsdurchführung und Auswertung 7 Zusammenfassung und Ausblick
226

Entwicklung von Dünnglas-Kunststoff-Hybridplatten für das Bauwesen

Hänig, Julian 19 July 2023 (has links)
Moderne architektonische Fassadengestaltungen und Ganzglaskonstruktionen fordern immer häufiger entmaterialisiert wirkende Ansichten mit maximaler Transparenz für eine edle Erscheinung und einen hohen Grad an natürlicher Belichtung. Damit gehen große Spannweiten einher. Diese führen zu stark dimensionierten Glasaufbauten und bringen hohes Eigengewicht in die Konstruktion ein. Die Verfügbarkeit von Dünnglas in bautechnisch relevanten Abmessungen ermöglicht neue gewichtssparende Konstruktionsprinzipien und innovative Materialkombinationen. Dünnglas-Kunststoff-Hybridplatten bestehen aus einem leichten transparenten Kunststoffkern mit außenliegenden kratzbeständigen und dauerhaften Deckschichten aus Dünnglas. Sie bieten eine hohe Steifigkeit, Dauerhaftigkeit und volle Transparenz bei geringem Eigengewicht. Die Aushärtung der Ausgangskomponenten des Kunststoffkerns erfolgt direkt zwischen den Deckschichten und erzeugt dadurch einen vollflächigen Verbund zwischen Glas und Kunststoff ohne zusätzliche Zwischenschichten. Im Bauwesen sind Dünnglas-Kunststoff-Hybridplatten bislang unbekannt. Es liegen weder ausreichend Kenntnisse zu den Material- und Verbundeigenschaften vor noch sind die Eigenschaften als Bauprodukt entsprechend den hohen strukturellen und sicherheitstechnischen Anforderungen sowie den Ansprüchen an die Dauerhaftigkeit und an die optischen Eigenschaften nachgewiesen. Darüber hinaus fehlen konkrete Verbindungskonzepte zur Integration in das Bauwesen, um das Leichtbaupotenzial für entmaterialisiert wirkende transparente Konstruktionen auszunutzen. Im Rahmen dieser Arbeit werden erstmals Dünnglas-Kunststoff-Hybridplatten als innovatives Leichtbauprodukt systematisch untersucht und in das Bauwesen eingeordnet. Experimentelle und numerische Untersuchungen charakterisieren die Material- und Verbundeigenschaften mit zwei, am Markt verfügbaren, Kunststoffkernmaterialien – Polymethylmethacrylat (PMMA) und Polyurethan (PU), die jeweils für ein unterschiedliches Eigenschaftsspektrum stehen. Darüber hinaus wird zur Umsetzung maximaler Transparenz eine materialgerechte Verbindungstechnik entwickelt und deren mechanische Tragfähigkeiten charakterisiert. Zunächst werden in experimentellen Kleinteilprüfungen die thermophysikalischen und mechanischen Kennwerte der reinen Kunststoffkernmaterialien für die Beschreibung des Tragverhaltens im Verbund ermittelt. Anhand der Ergebnisse werden das PMMA als steifes, dauerhaftes, aber sprödes Material und das PU als vergleichsweise flexibles, zähes Material charakterisiert. Die experimentellen Untersuchungen zum Verbundverhalten fokussieren sich auf die Anforderungen für den Einsatz im Bauwesen. Eine numerische Strukturanalyse erweitert die Ergebnisse zum Tragverhalten und klärt offengebliebene Fragestellungen zum thermischen Ausdehnungsverhalten. Die Ergebnisse zeigen, dass mit Dünnglas-Kunststoff-Hybridplatten ein effizientes Tragverhalten und eine signifikante Gewichtsreduktion gegenüber herkömmlichem monolithischem Glas und Verbundglas erreicht wird. Anhand der spezifizierten Verbundeigenschaften werden resultierende Anwendungspotenziale entsprechend der Materialkombination abgeleitet. Die weiterführende Entwicklung einer tragfähig in den Kunststoffkern integrierten Verbindungstechnik bietet innovative Anbindungsmöglichkeiten für Dünnglas-Kunststoff-Hybridplatten im Strukturleichtbau. Die Funktionsweise wurde anhand eines Konstruktionsbeispiels auf der „glasstec 2022“ demonstriert. Die vorliegende Arbeit beinhaltet eine strukturierte Kennwertsammlung zur erstmaligen ingenieurmäßigen Beschreibung des Material- und Verbundverhaltens von Dünnglas-Kunststoff-Hybridplatten mit zwei unterschiedlichen Kunststoffkernmaterialien. Die Materialkombination aus Dünnglas und PMMA-Kunststoffkern erzielt die größte Materialeffizienz für eine effektive Gewichtsreduktion und erfüllt die grundlegenden Anforderungen aus dem Bauwesen. Anhand der weiterführend entwickelten konstruktiven Verbindungstechnik wird ein breiter Anwendungsbereich erschlossen. Mit den Ergebnissen dieser Arbeit werden somit die Grundlagen für die Einführung als Bauprodukt und für eine gewichtssparende Konstruktionsweise zur Umsetzung maximaler Transparenz geschaffen.:1 Einleitung 2 Grundlagen 3 Dünnglas-Kunststoff-Hybridplatten 4 Materialcharakterisierung Kunststoffkern 5 Verbundverhalten 6 Numerische Strukturanalyse 7 Einordnung in das Bauwesen 8 Konstruktive Verbindungstechnik 9 Konstruktionsbeispiel und Empfehlungen 10 Zusammenfassung und Ausblick 11 Literatur / Modern façade designs and all-glass construction are increasingly calling for dematerialisation and maximum transparency for a sophisticated appearance and a high degree of natural lighting. This is accompanied by large glass spans leading to increasing thickness of glass panels that introduce a high dead load into the supporting structure. The availability of thin glass in architecturally relevant dimensions permits new lightweight design principles and innovative material combinations. Innovative thin glass-plastic-composite panels consist of a lightweight and transparent polymeric interlayer core with scratch-resistant and durable cover layers of thin glass. They offer high stiffness, durability and full transparency at a low specific weight. The raw components of the polymer core are directly cured between the cover layers resulting in a chemical bond between glass and polymer over the entire surface without the need for additional interlayers. The thin glass-plastic-composite panels are currently unknown in the building industry. There is a lack of knowledge about the material and its composite behaviour. It has not been verified as a building product in accordance with the high structural and safety requirements as well as the requirements for durability and optical properties. In order to employ the lightweight design potential for dematerialised and transparent construction suitable for the building industry, there is a need for specific and material-appropriate connection techniques. In the context of this thesis, the novel thin glass-plastic-composite panels are systematically investigated in order to assess them as an innovative lightweight product. For the first time, they are classified in detail for application in the building industry. Material and composite properties using two different polymeric interlayer core materials – polymethyl methacrylate (PMMA) and polyurethane (PU) – are characterised by means of experimental and numerical investigations. Moreover, to achieve maximum transparency, a material-specific connection technique is developed and a wide range of mechanical load-bearing capacities are specified. First of all, the thermophysical and mechanical parameters of the pure polymer core materials are determined in experimental small part tests for the description of the composite load-bearing behaviour. The results identify the PMMA as a stiff, durable but brittle material and the PU as a fairly flexible, viscoelastic material. The investigations on the composite behaviour focus on the demands for use in the building industry and include experimental tests on the durability, the adhesion, the composite load-bearing behaviour as well as the response to hard and soft body impacts. A numerical analysis extends the results of experimental investigations on the structural load-bearing behaviour and examines the thermal expansion behaviour. The results indicate that the new material combination achieves a highly efficient structural load-bearing behaviour and a significant weight reduction compared to conventional monolithic and laminated glass. Application possibilities are derived based on the observed interlayer core material and composite characteristics. Further development of a connection technique as an integrated design into the polymeric interlayer core offers wide-ranging concepts of connecting thin glass-plastic-composite panels. Its functionality and practicability have been demonstrated in a construction prototype exhibited at “glasstec 2022” fair. The present work contains a well-structured material dataset to describe the material and composite behaviour of thin glass-plastic-composite panels comprehensively with two different polymeric interlayer core materials in engineering methodology. The material combination of thin glass and PMMA interlayer core achieves outstanding material efficiency with an effective weight reduction and fulfils the general requirements for application in building industry. A wide range of applications is facilitated thanks to the further development of a slim and integrated structural connection technique. The results of this work provide the framework for the introduction of a new lightweight building product with an innovative structural design to realise maximum transparency of façades and all-glass structures.:1 Einleitung 2 Grundlagen 3 Dünnglas-Kunststoff-Hybridplatten 4 Materialcharakterisierung Kunststoffkern 5 Verbundverhalten 6 Numerische Strukturanalyse 7 Einordnung in das Bauwesen 8 Konstruktive Verbindungstechnik 9 Konstruktionsbeispiel und Empfehlungen 10 Zusammenfassung und Ausblick 11 Literatur
227

Bildgebende Fluoreszenzspektroskopie als Sensortechnologie für die Verwertung schwarzer Kunststoffe

Gruber, Florian 10 October 2022 (has links)
Sekundärrohstoffe und darauf aufbauende Rohstoffkreisläufe erlangen, bedingt durch die Endlichkeit der Primärrohstoffe, steigende Preise und eine zunehmende Umweltbelastung durch fehlendes Recycling, eine immer stärkere Bedeutung in der nationalen und globalen Wirtschaft ein. Darüber hinaus wird die Notwendigkeit geschlossener Rohstoffkreisläufe auch politisch und gesellschaftlich durch die Forderung eines nachhaltigen Wirtschaftens abgebildet. Nicht zuletzt für die Einhaltung der Klimaschutzziele sind geschlossene Roh-stoffkreisläufe von entscheidender Bedeutung. Neben Metallen sind insbesondere Kunststoffe Materialien, die in eine ökonomische Wiederverwertung eingebracht werden können und sollten. Eine Vielzahl technischer Kunststoffe bestehen jedoch aus einem Materialmix verschiedener Kunststoffe und Additive und liegen somit als Komposite oder Hybridbauteile vor. Oftmals enthalten diese Kunststoffe einen Rußanteil zur Schwarzfärbung. Jedoch können gerade schwarze Kunststoffe kaum mittels klassischer optischer Methoden hinreichend genau klassifiziert werden. Trotz des hohen Materialwertes solcher technischen Kunststoffe sind diese daher derzeit nur teilweise oder gar nicht ökonomisch wiederverwertbar. Hauptgrund dafür ist, dass eine zuverlässig arbeitende Sensortechnologie zur Sortierung unterschiedlichster, aber insbesondere schwarzer Kunststoffmischungen nicht verfügbar ist. Das Ziel dieses Promotionsvorhabens ist daher die Entwicklung und Evaluierung einer schnellen und zuverlässigen Erkennungstechnologie für die Klassifizierung schwarzer Kunststoffgemische mit hoher Genauigkeit (bis zu 99,9 %) und einem hohen Durchsatz. Die Basis dafür bildet die bildgebende Laser-Fluoreszenzspektroskopie in Kombination mit künstlicher Intelligenz. Insbesondere soll die zu entwickelnde Technologie die Sortierung kleiner Partikel ermöglichen, wie sie beispielsweise bei der Zerkleinerung von Kompositbauteilen anfallen. Die Entwicklung der Methode zur Klassifizierung schwarzer Kunststoffe erfolgte anhand von zwölf Kunststoffklassen und wurde in drei Schritten durchgeführt. Zuerst wurden die Kunststoffe mit einer Reihe klassischer Spektroskopieverfahren untersucht. Einsatz der Raman-Spektroskopie deutete sich bereits an, dass die Kunststoffe teilweise eine Fluoreszenz aufweisen. Weitere Messungen der Fluoreszenz in Abhängigkeit der Anregungswellenlänge bestätigten dieses Verhalten und zeigten, dass für Anregungswellenlängen zwischen rund 500 nm und 600 nm die stärkste Fluoreszenz erhalten wird. Im nächsten Schritt wurde ein Labordemonstrator entwickelt und evaluiert, um die grundlegende Machbarkeit der Methode nachzuweisen. Der Labord-emonstrator arbeitet mit einer Hyperspektralkamera für den sichtbaren und nahinfraroten Spektralbereich, einer zeilenförmigen Laseranregung und einer zusätzlichen nahinfrarot Beleuchtung. Die Nahinfrarotbeleuchtung ermöglicht dabei eine bessere Erkennung der Position und Form der Kunststoffpartikel, insbesondere wenn diese kein oder nur ein schwaches Fluoreszenzsignal aufweisen. Für die Versuche wurden zwei Laser mit einer Wellenlänge von 532 nm und 450 nm eingesetzt. Das entwickelte System wurde kalibriert und charakterisiert und anschließend wurden Messungen von schwarzen Kunststoffpartikeln aus 12 Kunststoffklassen durchgeführt und die erhaltenen Daten wurden für Klassifikationsversuche eingesetzt. Bei diesen Klassifikationsexperimenten wurde die Gesamtgenauigkeit bei der Klassifikation aller zwölf Kunststoffklassen betrachtet und es erfolgte die Untersuchung unterschiedlicher Klassifikationsalgorithmen, unterschiedlicher Arten der Datenvorverarbeitung, sowie einer automatischen Optimierung der Hyperparameter der Klassifikationsalgorithmen. Die gleichzeitige Klassifikation aller 12 Kunststoffklassen ist im späteren Einsatz nicht relevant, da meist nur zwei bis drei Kunststoffarten gleichzeitig erkannt und sortiert werden müssen. Die durchgeführten Versuche dienten daher hauptsächlich dem grundsätzlichen Nachweis der Leistungsfähigkeit der Methode und dem Vergleich der unterschiedlichen Methoden des maschinellen Lernens und der Datenvorverarbeitung. Bei den betrachteten Klassifikationsalgorithmen handelt es sich um die Diskriminanzanalyse (DA), die k-Nächste-Nachbarn-Klassifikation (kNN), Ensembles von Entscheidungsbäumen (ENSEMBLE), Support Vector Machines (SVM) und Convolutional Neural Networks (CNN). Die Optimierung der Hyperparameter erfolgte durch zwei Verfahren: Random Search und Bayesian Optimization Algorithm. Es zeigte sich, dass die besten Klassifikationsgenauigkeiten für den CNN-, gefolgt von ENSEMBLE- und SVM-Algorithmus, erzielt werden können. Die höchste erhaltene Genauigkeit lag für den 450 nm Laser mit 93,5 % über der des 532 nm Lasers mit 87,9 %. Um eine realistische Einschätzung der Klassifikationsgenauigkeit für die im Anwendungsfall auftretenden Mischungen aus zwei bis drei Kunststoffklassen zu erhalten, wurden auch 41 Kunststoffmischungen hinsichtlich ihrer Klassifizierbarkeit untersucht. Bei diesen 41 Mischungen handelt es sich um industriell relevante Kombinationen der zwölf betrachteten Kunststoffklassen. Für nahezu alle der industriell relevanten Kunststoffmischungen konnte die Klassifikationsgenauigkeit von > 99,9 % erreicht werden. Aufbauend auf diesen Erkenntnissen wurde daher im dritten Schritt der vorliegenden Arbeit das Sensorsystem für einen industrienahen Demonstrator für die Sortierung schwarzer Kunststoffpartikel unter anwendungsnahen Bedingungen entwickelt, aufgebaut und evaluiert. Der entwickelte industrienahe Demonstrator wurde kalibriert und charakterisiert und anschließend wurden erneut Messungen der schwarzen Kunststoffpartikel durchgeführt. Mit den erhaltenen Daten wurden anschließend erneut Klassifikationsmodelle trainiert, optimiert und validiert. Die Ergebnisse der Klassifikationsversuche zeigen, dass die erhaltenen Genauigkeiten für das Demonstratorsystem geringer als für den Labordemonstrator ausfallen. Trotzdem konnte mit den besten Messparametern für fünf Mischungen, welche mit derzeitigen Methoden nicht sortierbar sind, eine sehr gute Klassifikationsgenauigkeit von > 99 % erreicht werden. Insgesamt sind die mit dem entwickelten industrienahen Demonstratorsystem erhaltenen Ergebnisse sehr vielversprechend. Für viele industriell relevante Kunststoffmischungen konnte bereits eine ausreichend hohe Klassifikationsgenauigkeit demonstriert werden. Es ist abzusehen, dass der entwickelte industrielle Demonstrator, mit nur wenigen, aber sehr effektiven Hardwaremodifikationen, auch für die Sortierung vieler weiterer Kunststoffmischungen eingesetzt werden kann. Es wurde also erfolgreich ein System zur Erkennung und Klassifizierung schwarzer Kunststoffpartikel entwickelt, welches ein ökonomisch sinnvolles Recycling dieser Kunststoffe ermöglicht und damit signifikant zum Aufbau einer nachhaltigen Kreislaufwirtschaft beitragen kann.:Inhaltsverzeichnis Inhaltsverzeichnis I Abbildungsverzeichnis V Tabellenverzeichnis XIII Abkürzungsverzeichnis XX Symbolverzeichnis XXIII 1 Einleitung 1 2 Theoretische Grundlagen 5 2.1 Stand der Technik des Kunststoffrecyclings 5 2.2 Kunststoffe 14 2.2.1 Eingesetzte Kunststoffe 15 2.2.2 Zusatzstoffe für Kunststoffe 17 2.2.3 Ökologische und Ökonomische Aspekte des Recyclings von Kunststoffen 18 2.3 Optische Spektroskopie 22 2.3.1 Grundlagen der Spektroskopie 22 2.3.2 Methoden der optische Spektroskopie 28 2.3.3 Hyperspektrale Bildgebung 30 2.3.4 Grundlagen zur Charakterisierung eines (Laser-)HSI Systems 32 2.4 Multivariate Datenanalyse 38 2.4.1 Datenvorverarbeitung, Datenreduktion und Explorative Datenanalyse 39 2.4.2 Klassifikationsalgorithmen 47 2.4.3 Hyperparameteroptimierung 61 2.4.4 Validierung von Klassifikationsverfahren 64 3 Experimentelle Durchführung 73 3.1 Untersuchte Kunststoffe 73 3.1.1 Eingesetzte Kunststoffgranulate 73 3.1.2 Kunststoffmischungen 74 3.2 Hardwarekonfiguration der entwickelten Laser-HSI-Systeme 76 3.2.1 Hardwarekonfiguration des Laser-HSI-Laborsystems 76 3.2.2 Hardwarekonfiguration des Laser-HSI-Demonstratorsystems 78 3.3 Eingesetzte Software und Computer-Hardware 80 3.3.1 imanto®Pro 80 3.3.2 Matlab® 81 3.3.3 Eingesetzte Computer-Hardware 81 3.4 Durchgeführte Messung mit den Laser-HSI-Systemen 82 3.4.1 Messung der schwarzen Kunststoffe mit dem Laser-HSI-Laborsystem 82 3.4.2 Messung der schwarzen Kunststoffe mit dem Laser-HSI-Demonstratorsystem 83 3.4.3 Verfügbarkeit der Daten 83 3.5 Spektroskopische Charakterisierung der Kunststoffproben 84 3.5.1 Fluoreszenz-Spektroskopie 84 3.5.2 Raman-Spektroskopie 84 3.5.3 Laser-HSI 85 4 Ergebnisse und Diskussion 88 4.1 Das Laser-HSI-Laborsystem 89 4.1.1 Anregungseinheit 89 4.1.2 System zur Strahlaufweitung 91 4.1.3 Detektionseinheit 94 4.1.4 Charakterisierung und Kalibrierung des bildgebenden Spektrometers 95 4.1.5 NIR-Beleuchtung 102 4.2 Laser-HSI-Demonstratorsystem zur Klassifikation schwarzer Kunststoffe 103 4.2.1 Anforderungen an das Demonstratorsystem 103 4.2.2 Aufbau des Sensormoduls des Demonstratorsystems 106 4.2.3 Kalibrierung und Charakterisierung des Sensormoduls des Demonstratorsystems 107 4.3 Spektroskopische Charakterisierung der schwarzen Kunststoffe 110 4.3.1 Fluoreszenz- und Raman-spektroskopische Untersuchungen der Kunststoffpartikel 111 4.3.2 Untersuchungen schwarzer Kunststoffpartikel mit dem Laser-HSI-Laborsystem 118 4.4 Klassifikations- und Optimierungsexperimente mit dem Laser-HSI-Laborsystem 124 4.4.1 Datenvorverarbeitung und Beschreibung der Daten 125 4.4.2 Explorative Datenanalyse 128 4.4.3 Untersuchungen zur Klassifikation der schwarzen Kunststoffe mit dem Laser-HSI-Laborsystem 135 4.4.4 Klassifikationsexperimente mittels klassischer Machine Learning-Verfahren 136 4.4.5 Hyperparameteroptimierung für die klassischen Machine Learning Verfahren 149 4.4.6 Untersuchung der Klassifikation durch Deep Learning Verfahren 157 4.4.7 Hyperparameteroptimierung für die Deep Learning-Verfahren 171 4.4.8 Vergleich und Diskussion der erhaltenen Klassifikationsmodelle 175 4.4.9 Übertragung der Ergebnisse auf die Klassifikation der industriell relevanten Kunststoffmischungen 177 4.4.10 Zusammenfassung 185 4.5 Untersuchungen zur Klassifikation der schwarzen Kunststoffe mit dem Demonstratorsystem 186 4.5.1 Beschreibung der Messungen mit dem Demonstratorsystem 186 4.5.2 Datenvorverarbeitung 190 4.5.3 Explorative Datenanalyse 193 4.5.4 Klassifikation der Kunststoffmischungen 198 4.5.5 Möglichkeiten für die Verbesserung der Klassifikationsgenauigkeit des Demonstratorsystems 210 5 Zusammenfassung und Ausblick 212 6 Literaturverzeichnis 219 7 Anhang I 7.1 Parameter der Raman-Messung der Kunststoffe I 7.2 Anregungs-Emissions-Matrices der schwarzen Kunststoffe II 7.3 Laser-HSI-Messungen IV 7.4 Modellparameter und Modellhyperprameter XII 7.5 Anderson-Darling-Test auf Normalverteilung XIX 7.5.1 Einfluss der Anzahl der verwendeten Hauptkomponenten XIX 7.5.2 Einfluss verschiedener Datenvorverarbeitungsmethoden XIX 7.5.3 Einfluss der Formparameter XXI 7.5.4 Durchführung der Hyperparameteroptimierung für das klassische Machine Learning XXI 7.5.5 Einfluss der Bildvorverarbeitung XXII 7.5.6 Einfluss der CNN-Topologie XXIII 7.5.7 Einfluss der Daten-Augmentierung XXIV 7.5.8 Durchführung der Hyperparameteroiptimierung für die Deep Learning-Verfahren XXIV 7.5.9 Vergleich und Diskussion der erhaltenen Klassifikationsmodelle XXV 7.6 Brown-Forsythe-Test auf Homoskedastizität XXV 7.6.1 Einfluss der Anzahl der verwendeten Hauptkomponenten XXV 7.6.2 Einfluss verschiedener Datenvorverarbeitungsmethoden XXV 7.6.3 Einfluss der Formparameter XXVI 7.6.4 Durchführung der Hyperparameteroptimierung für das klassische Machine Learning XXVI 7.6.5 Einfluss der Bildvorverarbeitung XXVII 7.6.6 Einfluss der CNN-Topologie XXVII 7.6.7 Einfluss der Daten-Augmentierung XXVII 7.6.8 Durchführung der Hyperparameteroptimierung für die Deep Learning-Verfahren XXVII 7.6.9 Vergleich und Diskussion der erhaltenen Klassifikationsmodelle XXVIII 7.7 Ergebnisse der Klassifikationsversuche mit den Daten des industrienahen Demonstrators XXVIII
228

Integrated connections for glass–plastic-composite panels: an experimental study under tensile loading at +23, +40 and +60 °C and different glass build-ups

Hänig, Julian, Weller, Bernhard 16 May 2024 (has links)
The desire of builders and architects of maximum transparency and homogeneous surfaces in glass façades and glass structures extends to interior all-glass applications such as glass partitions or all-glass doors. In conventional glass systems the interconnections are performed by eye-catching fittings and clamping details that reduce the transparency and disturb the aesthetics. Novel glass–plastic-composite panels show a significantly reduced self-weight by composition of a polymer polymethylmethacrylate (PMMA) interlayer core and cover layers of thin glass. The innovative composites show high structural performance with optical properties of conventional glass. The panels allow for a direct connection into the thick PMMA interlayer core with the supporting structure or other panels. Such an integrated connection design reduces stress concentrations and allows for the development of small and unobtrusive fittings. Different integrated connections for the glass–plastic-composite panels have been designed and investigated. This article presents an experimental study on different connections, such as mechanically fastened and adhesively integrated, tested under tensile loading. Based on video analyses, crack progressions and failure mechanisms are evaluated and discussed in detail. The tests investigate temperature effects as well as the influence of the interlayer core thickness and glass type of the cover layers in varying build-ups. The comprehensive evaluation includes a description of the mechanical load-bearing behaviour in form of load versus displacement graphs as well as an investigation of crack progression and failure mechanisms for the final assessment. The results from this experimental study elucidate the structural characteristics of integrated connections in glass–plastic-composite panels under tensile loading and represent a basis for the ongoing development of real application fittings.
229

Untersuchung zur Schweißbarkeit bei der Herstellung von Hybridbauteilen aus naturfaser-, holzfaser- und polymerfaserverstärkten Kunststoffen in Abhängigkeit von Rezeptur und äußeren Einflussfaktoren / Investigation of weldability in production of hybrid components consisting of natural and synthetic reinforced polymers as a function of formulation and outer influencing factors

Nendel, Klaus, Heim, Hans-Peter, Schubert, Christine, Rüppel, Annette, Clauß, Brit 18 September 2014 (has links) (PDF)
Das Forschungsvorhaben liefert einen Beitrag zum Schweißen von Gleich- und Mischmaterialverbindungen aus Naturfaserverstärkten Kunststoffen (NFK) sowie deren Verarbeitung im Compoundieren und Spritzguss. Es wurde holzfasergefülltes (WPC) und flachsfasergefülltes (FFC) Polypropylen (PP) mit unterschiedlichen Füllgraden verwendet. Der Einsatz synthetisch-organsicher Fasern (PET-Fasern) im Compound zielte darauf ab, besonders die Schlagzähigkeit zu verbessern. Im Bereich des Urformens wurden Aussagen zur Verarbeitbarkeit, zu rezepturabhängigen Kurz- und Langzeiteigenschaften sowie Aussagen zur Dauergebrauchsfähigkeit erarbeitet. Die Anwendbarkeit der Fügeverfahren Heizelement- (HE-Schweißen) und Vibrationsschweißen (VIB-Schweißen) konnte für Gleich- und Mischmaterialverbindungen sowohl ohne als auch mit angepasster Energieeinbringung nachgewiesen werden. In diesem Zusammenhang können Aussagen zur Rezepturabhängigkeit, Verfahrensführung, Parameterauswahl, Prüfkriterien sowie den technischen Grenzen der Schweißverbindung unter kurzzeitmechanischer Beanspruchung getroffen werden. Weiterhin wird ein Beitrag zur Dauergebrauchsfähigkeit unter UV-Globalbewitterung und thermischer Alterung sowie zu langzeitmechanischen Eigenschaften von NFK-Schweißverbindungen geliefert.
230

Funktionsintegrative Leichtbaustrukturen für Tragwerke im Bauwesen / Function-integrated lightweight structures in architecture

Gelbrich, Sandra 17 January 2018 (has links) (PDF)
In den letzten Jahren gewinnt der Leichtbau im Bauwesen im Zuge der Ressourceneinsparung wieder stärker an Bedeutung, denn ohne eine deutliche Steigerung der Effizienz ist zukunfts-fähiges Bauen und Wohnen nur schwer zu bewerkstelligen. Optimiertes Bauen, im Sinne der Errichtung und Unterhaltung von Bauwerken mit geringem Einsatz an Material, Energie und Fläche über den gesamten Lebenszyklus eines Gebäudes hinweg, bedarf des Leichtbaus in punkto Material, Struktur und Technologie. In der vorliegenden Arbeit wird ein wissenschaftlicher Überblick zum aktuellen Stand der eigenen Forschungen in Bezug auf funktionsintegrativen Leichtbau im Bauwesen gegeben sowie erweiterte Methoden und Ansätze abgeleitet, die eine Konzeption, Bemessung und Erprobung von neuartigen Hochleistungs-Tragstrukturen in Leichtbauweise gestatten. Dabei steht die Entwicklung leistungs-starker und zugleich multifunktionaler Werkstoffkombinatio-nen und belastungsgerecht dimensionierter Strukturkomponenten unter dem Aspekt der Gewichtsminimalität in Material und Konstruktion im Fokus. Ein breit gefächertes Eigen-schaftsprofil für \"maßgeschneiderte\" Leichtbauanwendungen besitzen textilverstärkte Ver-bundbauteile, denn sowohl die Fadenarchitektur als auch die Matrix können in weiten Berei-chen variiert und an die im Bauwesen vorliegenden komplexen Anforderungen angepasst werden. In der vorliegenden Arbeit werden hierzu vor allem Methoden und Lösungen anhand von Beispielen zu: multifunktionalen Faser-Kunststoff-Verbunden (FKV), funktionsintegrier-ten faserverstärkten mineralischen Tragelemente und Verbundstrukturen in textilbewehrter Beton-GFK-Hybridbauweise betrachtet. Von zentraler Bedeutung ist dabei die Schaffung von materialtechnischen, konstruktiven und technologischen Grundlagen entlang der gesamten Wertschöpfungskette – von der Leichtbauidee über Demonstrator und Referenzobjekt bis hin zur technologischen Umsetzung zur Überführung der Forschungsergebnisse in die Praxis. / In the last few years, lightweight construction in the building sector has gained more and more importance in the course of resource saving. Without a significant increase in efficiency, future-oriented construction and resource-conserving living is difficult to achieve. Optimized building, in the sense of the erection and maintenance of buildings with little use of material, energy and surface over the entire life time cycle of a building, requires lightweight design in terms of material, structure and technology. In this thesis, a scientific overview of the current state of research on function-integrative light-weight construction in architecture is presented. Furthermore, advanced methods and research approaches were developed and applied, that allows the design, dimensioning and testing of novel high-performance supporting structures in lightweight design. The focus is on the development of high-performance, multi-functional material combinations and load-adapted structural elements, under the aspect of weight minimization in material and construction. Textile-reinforced composites have a broad range of material properties for optimized \"tailor-made\" lightweight design applications, since the thread architecture as well as the matrix can be varied within wide ranges and can adapted to the complex requirements in the building industry. Within the scope of this thesis, methods and solutions are examined in the field of: multifunc-tional fiber-reinforced plastics (FRP), function-integrated fiber-reinforced composites with mineral matrix (TRC) and textile-reinforced hybrid composites (BetoTexG: combination of TRC and FRP). In this connection the creation of material, structural and technological foundations along the entire value chain is of central importance: From the lightweight design idea to the demonstrator and reference object, to the technological implementation for the transfer of the research results into practice.

Page generated in 0.1787 seconds