• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of Buddhism, theosophy, and science in František Kupka’s search for the immaterial through 1909 / Art History

Jones, Chelsea Ann 13 June 2012 (has links)
Czech painter František Kupka (1871-1957), who spent his active years in Paris, remains one of the most under-researched artists, given his important status as one of the first painters of totally abstract works of art, beginning in 1912. As such, his philosophical and iconographical sources have yet to be fully discussed. This thesis examines how three of Kupka's sources, Buddhism, Theosophy, and science, demonstrate his belief in the existence of an immaterial reality, which shaped his art and theory. In the late nineteenth and early twentieth centuries, the notion of invisible realities was a widespread concern of individuals aware of science and/or interested in mysticism and occultism. In this context, Buddhism would have offered another model for new ways of envisioning existence and consciousness. Two of Kupka's early works, The Soul of the Lotus (1898) and The Beginning of Life (1900), show his knowledge of Buddhist, and possibly Hindu, iconography. The Musée Guimet in Paris offered a rich supply of material by which an individual could learn about Buddhism, and Kupka's imagery likely drew upon such sources. In addition to the Musée Guimet, it is likely Kupka also encountered Buddhism through popularized Eastern thought--in part through books published in Paris on that subject as well as on Theosophy. The writings of Theosophical authors regularly addressed themes related both to Buddhism and to contemporary science, which was equally concerned with the invisible and the immaterial. Discoveries such as the X-ray, for example, affirmed the inaccuracy of human vision and the existence of a reality beneath surface appearances, which supported Theosophy in its reaction against materialism. I argue that Kupka's 1909 painting The Dream serves as a culmination of his concern for alternative conceptions of reality. Painted using a formal language of transparency, The Dream demonstrates Kupka's interest in Buddhism, Theosophy, and science and represents his belief in the immaterial as a critical stage in his philosophical and artistic evolution. / text
2

Résultats de généricité pour des réseaux / Generic results for networks

Percie du Sert, Maxime 03 July 2014 (has links)
Un réseau de cellules est un graphe orienté dont chaque sommet (aussi appelé cellule) représente un ensemble de variables et dont les arcs symbolisent les interactions entre ces variables. Les réseaux de cellules jouent un rôle important dans la modélisation de phénomènes neurologiques, de systèmes économiques ou biologiques, etc.. Soit G un graphe orienté possédant N sommets, on dit qu'une application f=(f_1,...,f_N) de X=X_1×...×X_N dans X (où X_j=R^dj) est admissible, si pour tout sommet j, f_j(x) dépend de x_i seulement si i->j est un arc de G. Dans cette thèse nous montrons que si G est fortement connecté et auto-dépendant, génériquement par rapport à f appartenant à l'ensemble des applications admissibles de classe C¹, le système dynamique engendré par l'équation différentielle x'(t)=f(x(t)) vérifie la propriété de Kupka-Smale, c'est-à-dire tous les éléments critiques (points d'équilibre et orbites périodiques) sont hyperboliques et les variétés stable et instable des éléments critiques s'intersectent transversalement. Ainsi, pour un ensemble dense d'applications admissibles, le système dynamique est au moins localement stable par perturbation (admissible ou non). Nous considérons également l'ensemble des applications « dissipatives » f de classe C¹ dont la différentielle Df(x) est une matrice de Jacobi cyclique positive en tout point x. De telles applications définissent un système coopératif. Nous montrons que le système dynamique engendré par l'équation x'(t)=f(x(t)) vérifie génériquement la propriété de Morse-Smale par rapport à de telles applications f, c'est-à-dire le système vérifie la propriété de Kupka-Smale, les éléments critiques sont en nombre fini et l'ensemble des points non-errants est égal à l'ensemble des éléments critiques. Cette propriété entraîne la stabilité structurelle du système dynamique. Finalement, dans cette thèse nous étudions aussi des réseaux de cellules satisfaisant des contraintes de symétrie locale. Pour de tels systèmes, nous montrons tout d'abord des résultats génériques d'observation à symétrie près, de synchronisation et de décalage de phase. Nous utilisons ces résultats pour montrer la généricité de l'hyperbolicité des points d'équilibre ainsi qu'un lemme d'injectivité pour les trajectoires. Les résultats de généricité de cette thèse sont obtenus à l'aide de théorèmes de transversalité de type Sard-Smale. / A coupled cell network consists in a directed graph, with each node (also called cell) representing a set of variables and with each arrow representing the interaction between these variables. Coupled cell networks play an important role in the modeling of phenomena in neurology, economics or biology, etc.. Let G be a directed graph with N nodes. A mapping f=(f_1,...,f_N) of X=X_1×...×X_N to X (where X_j=R^dj) is admissible, if for each node j, f_j(x) depends on x_i only if i->j is an arrow of G. In this thesis, we show that if the graph G is strongly connected and self-dependant, generically with respect to f in the class of admissible C¹-functions, the dynamical system generated by the differential equation x'(t)=f(x(t)) satisfies the Kupka-Smale property, that is all the critical elements (i.e. the equilibria and periodic orbits) are hyperbolic and the stable and unstable manifolds of these critical elements intersect transversally. As a consequence, for a dense set of admissible functions, the dynamical system is locally stable with respect of small perturbations (admissible or not). We also consider the set of "dissipative" mappings f of class C¹, the differential Df (x) of which is a positive cyclic Jacobi matrix at any point x. Such maps define a cooperative system. We show that the dynamical system generated by the equation x'(t)=f(x(t)) is generically Morse-Smale with respect to such mappings f, that is the system is Kupka-Smale, the critical elements are in finite number and the non-wandering set is equal to the set of critical elements. This property implies the structural stability of the dynamical system. Finally, in this thesis we also study coupled cell networks satisfying local symmetry constraints. For such systems, we first show generic results of observation, synchronization and phase shift. We use these properties to show the genericity of hyperbolicity of equilibrium points and an injectivity lemma for trajectories. In the proof of these genericity results, we use different Sard-Smale type theorems.

Page generated in 0.0339 seconds