Spelling suggestions: "subject:"kvantkemi."" "subject:"kvantkemisk.""
41 |
Quantum Chemical Studies of Radical Cation Rearrangement, Radical Carbonylation, and Homolytic Substitution ReactionsNorberg, Daniel January 2007 (has links)
<p>Quantum chemical calculations have been performed to investigate radical cation rearrangement, radical carbonylation, and homolytic substitution reactions of organic molecules.</p><p>The rearrangement of the bicyclopropylidiene radical cation to the tetramethyleneethane radical cation is predicted to proceed with stepwise disrotatory opening of the two rings. Each ring opening is found to be combined with a striking pyramidalization of a carbon atom in the central bond.</p><p>The isomerization of the norbornadiene radical cation to the cycloheptatriene radical cation (<b>CHT</b><b>.+</b>), initialized by opening of a bridgehead–methylene bond, is investigated. The most favorable path involves concerted rearrangement to the norcaradiene radical cation followed by ring opening to <b>CHT</b><b>.+</b>. The barrier of this channel is found to be significantly reduced upon substitution of the methylene group with C(CH<sub>3</sub>)<sub>2</sub>.</p><p>Stepwise mechanisms are predicted to be favored over concerted isomerization for the McLafferty rearrangement of the radical cations of butanal and 3-fluorobutanal. The barrier for the concerted rearrangement is found to be lowered by 17.2 kcal/mol upon substitution, a result which is rationalized by the calculated dipole moments and atomic charges.</p><p>Recent experiments showed that photoinitiated carbonylation of alkyl iodides with [<sup>11</sup>C]carbon monoxide may be significantly enhanced by using small amounts of ketones that have nπ* character of their excited triplet state. DFT calculations show the feasibility of an atom transfer type mechanism, proposed to explain these observations. Moreover, the computational results rationalize the observed differences in yield when using various alcohol solvents.</p><p>Finally, following photolysis of methyliodide, recent electron spin resonance spectroscopy experiments demonstrated that the S<sub>H</sub>2 reaction <sup>•</sup>CD<sub>3</sub> + SiD<sub>3</sub>CH<sub>3</sub> → CD<sub>3</sub>SiD<sub>3</sub> + <sup>•</sup>CH<sub>3</sub> proceeds with high selectivity over the energetically more favorable D abstraction. The role of geometrical effects, especially the formation of prereactive complexes between methylsilane and methyliodide is studied, and a plausible explanation for the experimentally observed paradox is presented.</p>
|
42 |
Quantum Chemical Studies of Radical Cation Rearrangement, Radical Carbonylation, and Homolytic Substitution ReactionsNorberg, Daniel January 2007 (has links)
Quantum chemical calculations have been performed to investigate radical cation rearrangement, radical carbonylation, and homolytic substitution reactions of organic molecules. The rearrangement of the bicyclopropylidiene radical cation to the tetramethyleneethane radical cation is predicted to proceed with stepwise disrotatory opening of the two rings. Each ring opening is found to be combined with a striking pyramidalization of a carbon atom in the central bond. The isomerization of the norbornadiene radical cation to the cycloheptatriene radical cation (CHT.+), initialized by opening of a bridgehead–methylene bond, is investigated. The most favorable path involves concerted rearrangement to the norcaradiene radical cation followed by ring opening to CHT.+. The barrier of this channel is found to be significantly reduced upon substitution of the methylene group with C(CH3)2. Stepwise mechanisms are predicted to be favored over concerted isomerization for the McLafferty rearrangement of the radical cations of butanal and 3-fluorobutanal. The barrier for the concerted rearrangement is found to be lowered by 17.2 kcal/mol upon substitution, a result which is rationalized by the calculated dipole moments and atomic charges. Recent experiments showed that photoinitiated carbonylation of alkyl iodides with [11C]carbon monoxide may be significantly enhanced by using small amounts of ketones that have nπ* character of their excited triplet state. DFT calculations show the feasibility of an atom transfer type mechanism, proposed to explain these observations. Moreover, the computational results rationalize the observed differences in yield when using various alcohol solvents. Finally, following photolysis of methyliodide, recent electron spin resonance spectroscopy experiments demonstrated that the SH2 reaction •CD3 + SiD3CH3 → CD3SiD3 + •CH3 proceeds with high selectivity over the energetically more favorable D abstraction. The role of geometrical effects, especially the formation of prereactive complexes between methylsilane and methyliodide is studied, and a plausible explanation for the experimentally observed paradox is presented.
|
43 |
A Quantum Chemical Investigation of Chemical Vapour Deposition of Fe using Ferrocene and Plasma ElectronsAndersson, Felicia January 2023 (has links)
Thin films provide a remarkable asset, as depositing a thin surface layer can completely alter a material’s characteristics and provide new, inexpensive, and valuable properties. In 2020, a new Chemical Vapour Deposition (CVD) approach was developed at Linköping University, using plasma electrons as reducing agents for the deposition of metallic thin films. To understand the CVD approach, comprehension of the deposition chemistry is crucial. In this thesis, I have performed a theoretical examination of the gas phase and surface chemistry of ferrocene in the recently developed CVD method to form metallic iron thin films, using plasma electrons as reducing agents. Results show that ferrocene anion formation and dissociation are probable in the gas phase, depending on the energy of the plasma electrons. It gets successively easier to dissociate the complex after gaining electrons. The most probable gas phase species leading to film formation was determined as FeCp2-, FeCp, and Cp− under the normal deposition parameters. An electron energy above 220 kJ/mol would suffice for ion formation and dissociation to form FeCp and Cp− fragments. On the surface, ferrocene’s vertical and horizontal adsorption is equally probable, with energies around -72 kJ/mol. Cp, Fe, and FeCp with Fe facing towards the surface interacts stronger with the surface than ferrocene, with adsorption energies of -179, -279 kJ/mol, and -284 kJ/mol. FeCp with Fe facing up from the surface had adsorption energy of -23 kJ/mol. As the surface bonding of Fe and FeCp with Fe facing the surface is stronger than for the other species, this poses a possible way of tuning the CVD method to limit carbon impurities. By providing above 180 kJ/mol energy, for example in the form of heating the substrate, the unwanted species FeCp2, Cp, and FeCp with the ring facing downwards would desorb from the surface, leaving the Fe and FeCp fragments with iron facing towards the surface still adsorbed. This poses a possible way of reducing carbon impurities.
|
44 |
ZnO nanoparticles : synthesis of Ga-doped ZnO, oxygen gas sensing and quantum chemical investigationHagelin, Alexander January 2011 (has links)
Doped ZnO nanoparticles were synthesized by three different methods – electrochemical deposition under oxidizing conditions (EDOC) , combustion method and wet chemical synthesis – for investigating the oxygen gas sensing response. Ga-doped ZnO was mostly synthesized but also In-doped ZnO was made. The samples were analyzed by XRD, SEM, EDX and TEM. Gas response curves are given alongside with Langmuir fitted curves and data for pure ZnO and Ga-doped ZnO. DFT quantum chemical investigation of cluster models ZnO nanoparticles were performed to evaluate defect effects and oxygen and nitrogen dioxide reactions with the ZnO surface. Defects were investigated by DOS and HOMO-LUMO plots , and are oxygen vacancy, zinc vacancy, zinc interstitial and gallium doping by replacing zinc with gallium. Oxygen and nitrogen dioxide reactions were investigated by computing Mulliken charges, bond lengths, DOS spectra and HOMO-LUMO plots.
|
Page generated in 0.2152 seconds