• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 3
  • Tagged with
  • 37
  • 37
  • 25
  • 14
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Preclinical and Clinical Development of the Novel Cyanoguanidine CHS 828 for Cancer Treatment

Hovstadius, Peter January 2005 (has links)
<p>CHS 828 is a cyanoguanidine with anti-tumour properties which has shown promising effects in several preclinical models. This thesis describes both preclinical and clinical studies aiming to investigate disease specific activity, clinical tolerability and efficacy of CHS 828.</p><p>In paper I we investigated CHS 828 activity in a cell line panel with human myeloma cells, three of these cell-lines were also tested in vivo using a hollow fibre rat-model. In paper II we investigated CHS 828 activity in primary human tumour samples from patients. CHS 828 showed an effect on all tumour cell types tested both the primary human tumour samples and the myeloma cell lines. Notably, CHS 828 showed a high relative in vitro activity against tumour cells from chronic lymphocytic leukaemia and high-grade lymphoma. </p><p>In a phase I trial we determined the maximum tolerated dose (MTD) of CHS 828. Haematological toxicity was generally mild and dominated by transient thrombocytopenia and lymphocytopenia. Non-haematological toxicity was mostly of gastrointestinal origin. The recommended phase two dose (RPTD) of CHS 828 was estimated to be 20 mg once daily for five days in cycles of 28 days duration.</p><p>In a phase II trial we investigated the effect of CHS 828 on patients diagnosed with B-CLL. In total 12 patients were enrolled. CHS 828 was found to be well tolerated and the most common haematological toxicity was thrombocytopenia. Non-haematological toxicities were generally mild. Transient decreases in lymphocyte counts could be discerned coinciding with drug dosing, but no sustained clinical responses could be achieved.</p><p>In conclusion, CHS 828 demonstrated marked effects in the preclinical investigations suggesting haematological malignancies as the main target. The clinical phase I study established a safe dose and the subsequent phase II trial in B-CLL patients showed biological effect but with no clinical disease response. </p>
12

Preclinical and Clinical Development of the Novel Cyanoguanidine CHS 828 for Cancer Treatment

Hovstadius, Peter January 2005 (has links)
CHS 828 is a cyanoguanidine with anti-tumour properties which has shown promising effects in several preclinical models. This thesis describes both preclinical and clinical studies aiming to investigate disease specific activity, clinical tolerability and efficacy of CHS 828. In paper I we investigated CHS 828 activity in a cell line panel with human myeloma cells, three of these cell-lines were also tested in vivo using a hollow fibre rat-model. In paper II we investigated CHS 828 activity in primary human tumour samples from patients. CHS 828 showed an effect on all tumour cell types tested both the primary human tumour samples and the myeloma cell lines. Notably, CHS 828 showed a high relative in vitro activity against tumour cells from chronic lymphocytic leukaemia and high-grade lymphoma. In a phase I trial we determined the maximum tolerated dose (MTD) of CHS 828. Haematological toxicity was generally mild and dominated by transient thrombocytopenia and lymphocytopenia. Non-haematological toxicity was mostly of gastrointestinal origin. The recommended phase two dose (RPTD) of CHS 828 was estimated to be 20 mg once daily for five days in cycles of 28 days duration. In a phase II trial we investigated the effect of CHS 828 on patients diagnosed with B-CLL. In total 12 patients were enrolled. CHS 828 was found to be well tolerated and the most common haematological toxicity was thrombocytopenia. Non-haematological toxicities were generally mild. Transient decreases in lymphocyte counts could be discerned coinciding with drug dosing, but no sustained clinical responses could be achieved. In conclusion, CHS 828 demonstrated marked effects in the preclinical investigations suggesting haematological malignancies as the main target. The clinical phase I study established a safe dose and the subsequent phase II trial in B-CLL patients showed biological effect but with no clinical disease response.
13

Structure-Based Virtual Screening : New Methods and Applications in Infectious Diseases

Jacobsson, Micael January 2008 (has links)
A drug discovery project typically starts with a pharmacological hypothesis: that the modulation of a specific molecular biological mechanism would be beneficial in the treatment of the targeted disease. In a small-molecule project, the next step is to identify hits, i.e. molecules that can effect this modulation. These hits are subsequently expanded into hit series, which are optimised with respect to pharmacodynamic and pharmacokinetic properties, through medicinal chemistry. Finally, a drug candidate is clinically developed into a new drug. This thesis concerns the use of structure-based virtual screening in the hit identification phase of drug discovery. Structure-based virtual screening involves using the known 3D structure of a target protein to predict binders, through the process of docking and scoring. Docking is the prediction of potential binding poses, and scoring is the prediction of the free energy of binding from those poses. Two new methodologies, based on post-processing of scoring results, were developed and evaluated using model systems. Both methods significantly increased the enrichment of true positives. Furthermore, correlation was observed between scores and simple molecular properties, and identified as a source of false positives in structure-based virtual screening. Two target proteins, Mycobacterium tuberculosis ribose-5-phosphate isomerase, a potential drug target in tuberculosis, and Plasmodium falciparum spermidine synthase, a potential drug target in malaria, were subjected to docking and virtual screening. Docking of substrates and products of ribose-5-phosphate isomerase led to hypotheses on the role of individual residues in the active site. Additionally, virtual screening was used to predict 48 potential inhibitors, but none was confirmed as an inhibitor or binder to the target enzyme. For spermidine synthase, structure-based virtual screening was used to predict 32 potential active-site binders. Seven of these were confirmed to bind in the active site.
14

Design and Synthesis of Angiotensin IV Peptidomimetics Targeting the Insulin-Regulated Aminopeptidase (IRAP)

Andersson, Hanna January 2010 (has links)
Peptidomimetics derived from the bioactive hexapeptide angiotensin IV (Ang IV, Val1-Tyr2-Ile3-His4-Pro5-Phe6) have been designed and synthesized. These peptidomimetics are aimed at inhibiting the insulin-regulated amino peptidase (IRAP), also known as the AT4 receptor. This membrane-bound zinc-metallopeptidase is currently under investigation regarding its potential as a target for cognitive enhancers. The work presented herein was based on stepwise replacement of the amino acid residues in Ang IV by natural and unnatural amino acids, non-peptidic building blocks, and also on the introduction of conformational constraints. Initially, we focused on the introduction of secondary structure mimetics and backbone mimetics. The C-terminal tripeptide His-Pro-Phe was successfully replaced by a γ-turn mimetic scaffold, 2-(aminomethyl)phenylacetic acid (AMPA), which was coupled via an amide bond to the carboxyl terminus of Val-Tyr-Ile. Substitution of Val-Tyr-Ile, Val-Tyr, Tyr-Ile and Tyr, respectively, by 4-hydroxydiphenylmethane scaffolds comprising a 1,3,5-substituted benzene ring as a central moiety unfortunately rendered peptidomimetics that were less potent than Ang IV. The subsequent approach involved the introduction of conformational constraints into Val-Tyr-Ile-AMPA by replacing Val and Ile by amino acid residues appropriate for disulfide cyclization or ring-closing metathesis. Chemically diverse structures encompassing an N-terminal 13- or 14-membered macrocyclic tripeptide and a C-terminal non-peptidic moiety were developed. Tyr2 and AMPA were modified to acquire further knowledge about the structure-activity relationships and, in addition, to improve the metabolic stability and reduce the polarity. Several of the compounds displayed a high capacity to inhibit IRAP and exhibited Ki values in the low nanomolar range. Hence, the new compounds were more than ten times more potent than the parent peptide Ang IV. Enhanced selectivity over the closely related aminopeptidase N (AP-N) was achieved, as well as improved stability against proteolysis by metallopeptidases present in the assays. However, additional investigations are required to elucidate the bioactive conformation(s) of the relatively flexible N-terminal macrocycles. The compounds presented in this thesis have provided important information on structure-activity relationships regarding the interaction of Ang IV-related pseudopeptides and peptidomimetics with IRAP. The best compounds in the series constitute important starting points for further discovery of Ang IV peptidomimetics suitable as tools in the investigation of IRAP and other potential targets for Ang IV. The literature presents strong support for the hypothesis that drug-like IRAP inhibitors would serve as a new type of future cognitive enhancers with potential use in the treatment of cognitive disorders, e.g. Alzheimer’s disease.
15

Development of Synthetic Routes for Preparation of 2,6-Disubstituted Spiro[3.3]heptanes.

Saarinen, Gabrielle January 2009 (has links)
2,6-Disubstituted spiro[3.3]heptanes were synthesized to investigate and develop synthetic methods for preparation of these compounds. Possibilities for introducing different functionalities like nitriles and sulfonamides were also investigated.   Synthetic routes presented describe successive [2+2] cycloadditions between dichloroketene and olefins to give the sought after spiro compounds with low to moderate yields throughout the multi-step synthesis. [2+2] Cycloadditions offered low turnovers and chromatography was required for purification.   A synthetic route with cyclisations through double substitution reactions between di-electrophiles and di-nucleophiles resulting in a 2,6-disubstituted spiro[3.3]heptane is also described. This multi-step synthesis offered higher turnover and yields and often there was no need for purification through chromatography.
16

Computational Modelling in Drug Discovery : Application of Structure-Based Drug Design, Conformal Prediction and Evaluation of Virtual Screening

Lindh, Martin January 2017 (has links)
Structure-based drug design and virtual screening are areas of computational medicinal chemistry that use 3D models of target proteins. It is important to develop better methods in this field with the aim of increasing the speed and quality of early stage drug discovery. The first part of this thesis focuses on the application of structure-based drug design in the search for inhibitors for the protein 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), one of the enzymes in the DOXP/MEP synthetic pathway. This pathway is found in many bacteria (such as Mycobacterium tuberculosis) and in the parasite Plasmodium falciparum. In order to evaluate and improve current virtual screening methods, a benchmarking data set was constructed using publically available high-throughput screening data. The exercise highlighted a number of problems with current data sets as well as with the use of publically available high-throughput screening data. We hope this work will help guide further development of well designed benchmarking data sets for virtual screening methods. Conformal prediction is a new method in the computer-aided drug design toolbox that gives the prediction range at a specified level of confidence for each compound. To demonstrate the versatility and applicability of this method we derived models of skin permeability using two different machine learning methods; random forest and support vector machines.
17

Synthesis of SARS-CoV-2 Main Protease Inhibitors

Elfström, Mia January 2021 (has links)
Coronaviruses have been responsible for several global disease outbreaks over the last 20 years, including the “Severe Acute Respiratory Syndrome” in 2002/2003, the “Middle East Respiratory Syndrome” in 2012, and the “Coronavirus Disease of 2019 (COVID19)”. These viruses are highly contagious and can cause multiple medical disorders upon contraction, such as common cold or lower respiratory infections. SARS-CoV-2, the newly emerged coronavirus variant of 2019, has been confirmed as the cause of the ongoing COVID19 pandemic, which infected over 167 million people worldwide and, by the end of May 2021, has a death toll of over 3 million people. Even though several SARS-CoV-2 vaccines have made it to the market, no proven options have yet been discovered for treating COVID19 infections. The aim of this project is, therefore, to improve the potency of two active SARS-CoV-2 main protease (Mpro) inhibitors (ML188 and X77) by performing a structure-activity-relationship study where two specific sites of the inhibitors are altered. The inhibition activity of these compounds is then tested on isolated SARS-CoV-2 Mpro. The four-component Ugi reaction was utilized to synthesize the ML188 and X77 analogs, which were purified by column chromatography before testing. During this project, six pure analogs were successfully synthesized and will be sent shortly for testing. Inhibitors with good activity against SARS-CoV-2 Mpro will be further tested for their antiviral activity in cell-based infection assays. The results obtained from this study will later be used to perform a second structure-activity-relationship study to further improve the potency of the two inhibitors by developing a 2nd generation library.
18

A high-throughput method for screening of protein binding behavior of multimodal anionic exchange ligands

Avedis, Ani January 2021 (has links)
The biopharmaceutical industry is constantly developing biological drugs, resulting in increased levels of product related impurities having similar characteristics as the target. The aim of the ligand project was to address future challenging purifications by developing new ligands for future resins for the biopharmaceutical industry. The purpose of this study was to develop a high-throughput screening method and use it to compare 15 novel multimodal anionic exchange ligand analogues with two reference ligands, for future polishing steps in the downstream process. The protein binding behavior of the ligands were studied with alkaline phosphatase, human serum albumin, α-chymotrypsinogen A and a monoclonal antibody as model proteins, at various pH values and salt concentrations. The selection process of the model proteins was based on stability studies, a study of their adsorption to the 96 well plate, and their binding behavior on three of the ligand analogues and one reference ligand. The percent protein bound to the ligands at the various conditions was calculated and presented in plots in order to study their binding behaviors. The calculated values were also used in order to evaluate the results in principal component analysis, creating chromatographic diversity maps. The maps were used to get an overview of the differences and similarities of the ligand analogues compared to the reference resins, which can be used for selecting ligands for future research and biomanufacturing. Four analogues and one reference ligand were also studied in a column format where different gradients were used, which confirmed the obtained results in the plate experiments.
19

In the search for novel antirheumatics: Re-discovery of a secoiridoid aglycone in Chinese ethnomedicine Radix Gentiana macrophylla Pall.

Osman, Ali Zakaria Abdella January 2021 (has links)
Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that although systemic, mainly affects the synovium of the joints. Currently, remission is the goal of RA treatment. Research efforts are however targeted towards finding a cure. Radix Gentiana macrophylla Pall. (秦艽, Pinyin: Qinjiao) has been used for a long time in several prescriptions in the Chinese herbal medicinal tradition to treat, among others, rheumatic conditions. In this study, compounds from Radix G. macrophylla Pall. were extracted by maceration, isolated by NP-SPE followed by RP-HPLC-UV, identified by LRESIMS(+), 1D and 2D-NMR and finally prepared for in vitro screening (NF-κB downregulation activity). The method used was adapted from the NCI Program for Natural Product Discovery (NPNPD). This resulted in the identification of six known compounds. The secoiridoid aglycone (-)-swermusic acid B, known only in Swertia mussotii Franch., was however for the first time isolated from a Gentiana species.
20

Development and evaluation of a new methodology for the in vivo tracking of cells

Sun, Baiqing January 2023 (has links)
<p>This project is undergoing the patent application, so it is confidential and should not be disclosed. Further questions can be asked by contacting Dr. Jeroen Goos, whose contact information was shown in the supervisor section.</p>

Page generated in 0.0354 seconds