• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preclinical and Clinical Development of the Novel Cyanoguanidine CHS 828 for Cancer Treatment

Hovstadius, Peter January 2005 (has links)
<p>CHS 828 is a cyanoguanidine with anti-tumour properties which has shown promising effects in several preclinical models. This thesis describes both preclinical and clinical studies aiming to investigate disease specific activity, clinical tolerability and efficacy of CHS 828.</p><p>In paper I we investigated CHS 828 activity in a cell line panel with human myeloma cells, three of these cell-lines were also tested in vivo using a hollow fibre rat-model. In paper II we investigated CHS 828 activity in primary human tumour samples from patients. CHS 828 showed an effect on all tumour cell types tested both the primary human tumour samples and the myeloma cell lines. Notably, CHS 828 showed a high relative in vitro activity against tumour cells from chronic lymphocytic leukaemia and high-grade lymphoma. </p><p>In a phase I trial we determined the maximum tolerated dose (MTD) of CHS 828. Haematological toxicity was generally mild and dominated by transient thrombocytopenia and lymphocytopenia. Non-haematological toxicity was mostly of gastrointestinal origin. The recommended phase two dose (RPTD) of CHS 828 was estimated to be 20 mg once daily for five days in cycles of 28 days duration.</p><p>In a phase II trial we investigated the effect of CHS 828 on patients diagnosed with B-CLL. In total 12 patients were enrolled. CHS 828 was found to be well tolerated and the most common haematological toxicity was thrombocytopenia. Non-haematological toxicities were generally mild. Transient decreases in lymphocyte counts could be discerned coinciding with drug dosing, but no sustained clinical responses could be achieved.</p><p>In conclusion, CHS 828 demonstrated marked effects in the preclinical investigations suggesting haematological malignancies as the main target. The clinical phase I study established a safe dose and the subsequent phase II trial in B-CLL patients showed biological effect but with no clinical disease response. </p>
2

Preclinical and Clinical Development of the Novel Cyanoguanidine CHS 828 for Cancer Treatment

Hovstadius, Peter January 2005 (has links)
CHS 828 is a cyanoguanidine with anti-tumour properties which has shown promising effects in several preclinical models. This thesis describes both preclinical and clinical studies aiming to investigate disease specific activity, clinical tolerability and efficacy of CHS 828. In paper I we investigated CHS 828 activity in a cell line panel with human myeloma cells, three of these cell-lines were also tested in vivo using a hollow fibre rat-model. In paper II we investigated CHS 828 activity in primary human tumour samples from patients. CHS 828 showed an effect on all tumour cell types tested both the primary human tumour samples and the myeloma cell lines. Notably, CHS 828 showed a high relative in vitro activity against tumour cells from chronic lymphocytic leukaemia and high-grade lymphoma. In a phase I trial we determined the maximum tolerated dose (MTD) of CHS 828. Haematological toxicity was generally mild and dominated by transient thrombocytopenia and lymphocytopenia. Non-haematological toxicity was mostly of gastrointestinal origin. The recommended phase two dose (RPTD) of CHS 828 was estimated to be 20 mg once daily for five days in cycles of 28 days duration. In a phase II trial we investigated the effect of CHS 828 on patients diagnosed with B-CLL. In total 12 patients were enrolled. CHS 828 was found to be well tolerated and the most common haematological toxicity was thrombocytopenia. Non-haematological toxicities were generally mild. Transient decreases in lymphocyte counts could be discerned coinciding with drug dosing, but no sustained clinical responses could be achieved. In conclusion, CHS 828 demonstrated marked effects in the preclinical investigations suggesting haematological malignancies as the main target. The clinical phase I study established a safe dose and the subsequent phase II trial in B-CLL patients showed biological effect but with no clinical disease response.
3

Contribution de l'approche de pharmacocinétique de population au développement clinique des médicaments : application aux données de phase III / Contribution of pharmacokinetic population approach to clinical drug development : application to phase III data

Martinez, Jean-Marie 15 November 2010 (has links)
Par l'utilisation de techniques statistiques poussées, l'approche de population rend l'estimation des propriétés pharmacocinétiques (étude des phénomènes d'absorption, distribution, métabolisme et élimination du médicament dans l'organisme) possible chez les patients inclus dans les études de Phase III, en dépit d'un nombre de prélèvements sanguins réduit. Elle permet également d'évaluer, parmi les caractéristiques des patients, les sources de variabilité interindividuelle (covariables) pouvant expliquer les différences potentielles observées dans telle ou telle sous-population.Après un bref rappel bibliographique de la technique, nous présentons les résultats des analyses effectuées sur trois candidats-médicaments en fin de développement clinique. Le premier exemple détaille le processus d'une analyse de population réalisée chez plus de 3000 patients ainsi que les résultats d'une analyse pharmacocinétique/pharmacodynamique. Dans la deuxième partie, nous insistons sur une technique particulière de validation (le bootstrap) et détaillons l'étape de simulation mise en place pour appuyer les conclusions de l'analyse. La dernière analyse présente enfin un modèle pharmacocinétique de population combinant les données d'un produit parent et de son métabolite actif, l'autre originalité de l'analyse étant l'utilisation du randomization test afin de vérifier l'inclusion de covariables dans le modèle.Les conclusions de ces analyses permettent de mieux appréhender la cinétique des trois molécules dans leur population cible par la mise en évidence d'éventuelles sous-populations à risque et, ainsi, de veiller à leur efficacité et à leur absence de toxicité. / Using sophisticated statistical techniques, the population approach allows estimating the pharmacokinetic properties (study of the absorption, distribution, metabolism and elimination phenomena of a drug into the body) in patients included in Phase III studies, despite a low number of blood samples collected. It also allows evaluating, from the patients' characteristics, the sources of interindividual variability (covariates) that may explain the potential differences observed in a given subpopulation.After a brief review of the technical aspects of the population approach, the results of the analyses performed on three drugs in the end of their clinical development will be presented. The first example details the process of a population analysis carried out in more than 3000 patients, together with the results of a pharmacokinetic/pharmacodynamic analysis. In a second part, we underline a validation technique (the bootstrap) and the simulation study performed to emphasize the conclusions of the study. The last example presents a population pharmacokinetic model applied to the simultaneous fit of data from a parent drug and its active metabolite, the other originality of the analysis being the use of the randomization test to verify the covariates inclusion in the model.The conclusions of these analyses allow a better understanding of the kinetics of the three drugs in their target population by emphasizing potential subpopulations at risk and, hence, participate to verify their efficacy and their absence of toxicity.
4

Application of In Vitro Chemosensitivity Testing for Evaluation of New Cytotoxic Drugs in Chronic Lymphocytic Leukaemia

Åleskog, Anna January 2002 (has links)
<p>Despite major advances in the understanding of the biology of chronic lymphocytic leukaemia (CLL), progress in improving its treatment has been limited and it still remains an incurable disorder. In the present research, we have performed <i>in vitro</i> drug sensitivity testing of primary CLL cells for preclinical evaluation of cytotoxic drugs, using the fluorometric microculture cytotoxicity assay (FMCA).</p><p>The tumour type-specific activities of 14 standard drugs, evaluated <i>in vitro</i> on tumour cells from patients with CLL and acute leukaemias, were in good agreement with their known clinical activities. A correlation between drug treatment and development of cellular drug resistance was demonstrated in CLL, but not in the acute leukaemias. Moreover, the nucleoside analogues fludarabine, cladribine, cytarabine and gemcitabine, as well as the anthracycline idarubicin, were highly active in CLL cells.</p><p>A new cytotoxic drug candidate, CHS 828, was evaluated in primary cell cultures from a broad spectrum of tumours. CHS 828 was highly active against haematological malignancies <i>in vitro</i>, especially CLL, but also against some solid tumours. The drug appeared to be non cross-resistant with standard drugs.</p><p>In addition, the relationship between drug sensitivity <i>in vitro</i> and a recently described prognostic factor in CLL, the mutational status of the immunoglobulin variable heavy chain (IgV<sub>H</sub>) gene, was evaluated. Interestingly, cells with unmutated IgV<sub>H</sub> genes were more chemosensitive than the mutated cells. </p><p>In summary, our results indicate that <i>in vitro</i> studies on tumour cellsfrom leukaemia patients may yield considerable information regarding the activity, mechanisms of action and cross-resistance of cytotoxic drugs, as well as concerning the relationship between drug sensitivity and prognostic factors, which can be useful in the preclinical evaluation of new cytotoxic drugs. Furthermore, the results suggest that the pyrimidine analogues cytarabine and gemcitabine, as well as the anthracycline idarubicin, may have a role in the treatment of CLL. The new cyanoguanidine CHS 828 is highly active in CLL cells and appears to be non cross-resistant with standard drugs. The poorer prognosis in patients with CLL cells with unmutated IgV<sub>H</sub> genes can not be explained by increased chemoresistance.</p>
5

Application of In Vitro Chemosensitivity Testing for Evaluation of New Cytotoxic Drugs in Chronic Lymphocytic Leukaemia

Åleskog, Anna January 2002 (has links)
Despite major advances in the understanding of the biology of chronic lymphocytic leukaemia (CLL), progress in improving its treatment has been limited and it still remains an incurable disorder. In the present research, we have performed in vitro drug sensitivity testing of primary CLL cells for preclinical evaluation of cytotoxic drugs, using the fluorometric microculture cytotoxicity assay (FMCA). The tumour type-specific activities of 14 standard drugs, evaluated in vitro on tumour cells from patients with CLL and acute leukaemias, were in good agreement with their known clinical activities. A correlation between drug treatment and development of cellular drug resistance was demonstrated in CLL, but not in the acute leukaemias. Moreover, the nucleoside analogues fludarabine, cladribine, cytarabine and gemcitabine, as well as the anthracycline idarubicin, were highly active in CLL cells. A new cytotoxic drug candidate, CHS 828, was evaluated in primary cell cultures from a broad spectrum of tumours. CHS 828 was highly active against haematological malignancies in vitro, especially CLL, but also against some solid tumours. The drug appeared to be non cross-resistant with standard drugs. In addition, the relationship between drug sensitivity in vitro and a recently described prognostic factor in CLL, the mutational status of the immunoglobulin variable heavy chain (IgVH) gene, was evaluated. Interestingly, cells with unmutated IgVH genes were more chemosensitive than the mutated cells. In summary, our results indicate that in vitro studies on tumour cellsfrom leukaemia patients may yield considerable information regarding the activity, mechanisms of action and cross-resistance of cytotoxic drugs, as well as concerning the relationship between drug sensitivity and prognostic factors, which can be useful in the preclinical evaluation of new cytotoxic drugs. Furthermore, the results suggest that the pyrimidine analogues cytarabine and gemcitabine, as well as the anthracycline idarubicin, may have a role in the treatment of CLL. The new cyanoguanidine CHS 828 is highly active in CLL cells and appears to be non cross-resistant with standard drugs. The poorer prognosis in patients with CLL cells with unmutated IgVH genes can not be explained by increased chemoresistance.

Page generated in 0.1279 seconds