• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 15
  • 15
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Regulation of the cardiac isoform of the ryanodine receptor by S-adenosyl-l-methionine

Gaboardi, Angela Kampfer 08 November 2011 (has links)
Activity of the Ryanodine Receptor (RyR2) (aka cardiac Ca2+ release channel) plays a pivotal role in contraction of the heart. S-adenosyl-l-methionine (SAM) is a biological methyl group donor that has close structural similarity to ATP, an important physiological regulator of RyR2. This work provides evidence that SAM can act as a RyR2 regulatory ligand in a manner independent from its recognized role as a biological methyl group donor. RyR2 activation appears to arise from the direct interaction of SAM, via its adenosyl moiety, with the RyR2 adenine nucleotide binding sites. Because uncertainty remains regarding the structural motifs involved in RyR2 modulation by ATP and its metabolites, this finding has important implications for clarifying the structural basis of ATP regulation of RyR2. During the course of this project, direct measurements of single RyR2 activity revealed that SAM has distinct effects on RyR2 conductance. From the cytosolic side of the channel, SAM produced a single clearly resolved subconductance state. The effects of SAM on channel conductance were dependent on SAM concentration and membrane holding potential. A second goal of this work was to distinguish between the two possible mechanisms by which SAM could reduce RyR2 conductance: i) SAM interfering directly with ion permeation via binding within the conduction pathway (pore block), or ii) SAM binding a regulatory (or allosteric) site thereby stabilizing or inducing a reduced conductance conformation of the channel. It was determined that SAM does not directly interact with the RyR2 conduction pathway. To account for these observations an allosteric model for the effect of SAM on RyR2 conductance is proposed. According to this model, SAM binding stabilizes an inherent RyR2 subconductance conformation. The voltage dependence of the SAM related subconductance state is accounted for by direct effects of voltage on channel conformation which indirectly alter the affinity of RyR2 for SAM. Patterns in the transitions between RyR2 conductance states in the presence of SAM may provide insight into the structure-activity relationship of RyR2 which can aid in the development of therapeutic strategies targeting this channel.
12

Development of Novel Methods and their Utilization in the Analysis of the Effect of the N-terminus of Human Protein Arginine Methyltransferase 1 Variant 1 on Enzymatic Activity, Protein-protein Interactions, and Substrate Specificity

Suh-Lailam, Brenda Bienka 01 May 2010 (has links)
Protein arginine methyltransferases (PRMTs) are enzymes that catalyze the methylation of protein arginine residues, resulting in the formation of monomethylarginine, and/or asymmetric or symmetric dimethylarginines. Although understanding of the PRMTs has grown rapidly over the last few years, several challenges still remain in the PRMT field. Here, we describe the development of two techniques that will be very useful in investigating PRMT regulation, small molecule inhibition, oligomerization, protein-protein interaction, and substrate specificity, which will ultimately lead to the advancement of the PRMT field. Studies have shown that having an N-terminal tag can influence enzyme activity and substrate specificity. The first protocol tackles this problem by developing a way to obtain active untagged recombinant PRMT proteins. The second protocol describes a fast and efficient method for quantitative measurement of AdoMet-dependent methyltranseferase activity with protein substrates. In addition to being very sensitive, this method decreases the processing time for the analysis of PRMT activity to a few minutes compared to weeks by traditional methods, and generates 3000-fold less radioactive waste. We then used these methods to investigate the effect of truncating the NT of human PRMT1 variant 1 (hPRMT1-V1) on enzyme activity, protein-protein interactions, and substrate specificity. Our studies show that the NT of hPRMT1-V1 influences enzymatic activity and protein-protein interactions. In particular, methylation of a variety of protein substrates was more efficient when the first 10 amino acids of hPRMT1v1 were removed, suggesting an autoinhibitory role for this small section of the N-terminus. Likewise, as portions of the NT were removed, the altered hPRMT1v1 constructs were able to interact with more proteins. Overall, my studies suggest the the sequence and length of the NT of hPRMT1v1 is capable of enforcing specific protein interactions.
13

DYNAMICS OF SUBSTRATE INTERACTIONS IN tRNA (m1G37) METHYLTRANSFERASE: IMPLICATIONS FOR DRUG DISCOVERY

Palesis, Maria Kiouppis 14 February 2012 (has links)
The bacterial enzyme t-RNA (m1G37) methyltransferase (TrmD) is an ideal anti-microbial drug target since it is found in all eubacteria, serves an essential role during protein synthesis, and shares very little sequence or structural homology with its eukaryotic counterpart, Trm5. TrmD, a homodimeric protein, methylates the G37 nucleotide of tRNA using S-adenosyl-L-methionine (SAM) as the methyl donor and thus enables proper codon-anticodon alignment during translation. The two deeply buried binding sites for SAM seen in X-ray crystallography suggest that significant conformational changes must occur for substrate binding and catalytic turnover. Results from molecular dynamics simulations implicate a flexible loop region and a halo-like loop which may be gating the entrance to the active site. Analysis of simulation trajectories indicates an alternating pattern of active site accessibility between the two SAM binding sites, suggesting a single site mechanism for enzyme activity. Isothermal titration calorimetry (ITC), demonstrates that binding of SAM to TrmD is an exothermic reaction resulting from sequential binding at two sites. A similar mode of binding at higher affinities was observed for the product, S-adenosyl-L-homocysteine (SAH) suggesting that product inhibition may be important in vivo. ITC reveals that tRNA binding is an endothermic reaction in which one tRNA molecule binds to one TrmD dimer. This further supports the hypothesis of a single site mechanism for enzyme function. However, mutational analysis using hybrid mutant proteins suggests that catalytic integrity must be maintained in both active sites for maximum enzymatic efficiency. Mutations impeding flexibility of the halo loop were particularly detrimental to enzyme activity. Noncompetitive inhibition of TrmD was observed in the presence of bis-ANS, an extrinsic fluorescent dye. In silico ligand docking of bis-ANS to TrmD suggests that dye interferes with mobility of the flexible linker above the active site. Because SAM is a ubiquitous cofactor in methyltransferase reactions, analogs of this ligand may not be suitable for drug development. It is therefore important to investigate allosteric modes of inhibition. These experiments have identified key, mobile structural elements in the TrmD enzyme important for activity, and provide a basis for further research in the development of allosteric inhibitors for this enzyme.
14

Investigations of the Natural Product Antibiotic Thiostrepton from Streptomyces azureus and Associated Mechanisms of Resistance

Myers, Cullen Lucan January 2013 (has links)
The persistence and propagation of bacterial antibiotic resistance presents significant challenges to the treatment of drug resistant bacteria with current antimicrobial chemotherapies, while a dearth in replacements for these drugs persists. The thiopeptide family of antibiotics may represent a potential source for new drugs and thiostrepton, the prototypical member of this antibiotic class, is the primary subject under study in this thesis. Using a facile semi-synthetic approach novel, regioselectively-modified thiostrepton derivatives with improved aqueous solubility were prepared. In vivo assessments found these derivatives to retain significant antibacterial ability which was determined by cell free assays to be due to the inhibition of protein synthesis. Moreover, structure-function studies for these derivatives highlighted structural elements of the thiostrepton molecule that are important for antibacterial activity. Organisms that produce thiostrepton become insensitive to the antibiotic by producing a resistance enzyme that transfers a methyl group from the co-factor S-adenosyl-L-methionine (AdoMet) to an adenosine residue at the thiostrepton binding site on 23S rRNA, thus preventing binding of the antibiotic. Extensive site-directed mutagenesis was performed on this enzyme to generate point mutations at key active site residues. Ensuing biochemical assays and co-factor binding studies on these variants identified amino acid residues in the active site that are essential to the formation of the AdoMet binding pocket and provided direct evidence for the involvement of an active site arginine in the catalytic mechanism of the enzyme. Certain bacteria that produce neither thiostrepton nor the resistance methyltransferase express the thiostrepton binding proteins TIP-AL and TIP-AS, that irreversibly bind to the antibiotic, thereby conferring resistance by sequestration. Here, it was found that the point mutation of the previously identified reactive amino acid in TIP-AS did not affect covalent binding to the antibiotic, which was immediately suggestive of a specific, high affinity non-covalent interaction. This was confirmed in binding studies using chemically synthesized thiostrepton derivatives. These studies further revealed structural features from thiostrepton important in this non-covalent interaction. Together, these results indicate that thiostrepton binding by TIP-AS begins with a specific non-covalent interaction, which is necessary to properly orient the thiostrepton molecule for covalent binding to the protein. Finally, the synthesis of a novel AdoMet analogue is reported. The methyl group of AdoMet was successfully replaced with a trifluoromethyl ketone moiety, however, the hydrated form (germinal diol) of this compound was found to predominate in solution. Nevertheless, the transfer of this trifluoroketone/ trifluoropropane diol group was demonstrated with the thiopurine methyltransferase.
15

Investigations into Streptomyces azureus Thiostrepton-resistance rRNA Methyltransferase and its Cognate Antibiotic

Hang, Pei Chun January 2008 (has links)
Thiostrepton (TS: TS; C72H85N19O18S5) is a thiazoline antibiotic that is effective against Gram-positive bacteria and the malarial parasite, Plasmodium falciparum. Tight binding of TS to the bacterial L11-23S ribosomal RNA (rRNA) complex of the large 50S ribosomal unit inhibits protein biosynthesis. The TS producing organism, Streptomyces azureus, biosynthesizes thiostrepton-resistance methyltransferase (TSR), an enzyme that uses S-adenosyl-L-methionine (AdoMet) as a methyl donor, to modify the TS target site. Methylation of A1067 (Escherichia coli ribosome numbering) by TSR circumvents TS binding. The S. azureus tsr gene was overexpressed in E. coli and the protein purified for biochemical characterization. Although the recombinant protein was produced in a soluble form, its tendency to aggregate made handling a challenge during the initial stages of establishing a purification protocol. Different purification conditions were screened to generate an isolation protocol that yields milligram quantities of protein with little aggregation and sufficient purity for crystallographic studies. Enzymological characterization of TSR was carried out using an assay to monitor AdoMet-dependent ([methyl-3H]-AdoMet) methylation of the rRNA substrate by liquid scintillation counting. During the optimization of assay, it was found that, although this method is frequently employed, it is very time and labour intensive. A scintillation proximity assay was investigated to evaluate whether it could be a method for collecting kinetic data, and was found that further optimization is required. Comparative sequence analysis of TSR has shown it to be a member of the novel Class IV SpoUT family of AdoMet-dependent MTases. Members of this class possess a non-canonical AdoMet binding site containing a deep trefoil knot. Selected SpoUT family proteins were used as templates to develop a TSR homology model for monomeric and dimeric forms. Validation of the homology models was performed with structural validation servers and the model was then used as the basis of ongoing mutagenesis experiments. The X-ray crystal structure of TSR bound with AdoMet (2.45 Å) was elucidated by our collaborators, Drs. Mark Dunstan and Graeme Conn (University of Manchester). This structure confirms TSR MTase’s membership in the SpoUT MTase family with a deep trefoil knot in the catalytic domain. The AdoMet bound in the crystal structure is in an extended conformation not previously observed in SpoUT MTases. RNA docking simulations revealed some features that may be relevant to binding and recognition of TSR to the L11 binding domain of the RNA substrate. Two structure-activity studies were conducted to investigate the TS-rRNA interaction and TS solubility. Computational analyses of TS conformations, molecular orbitals and dynamics provided insight into the possible modes of TS binding to rRNA. Single-site modification of TS was attempted, targeting the dehydroalanine and dehydrobutyrine residues of the antibiotic. These moieties were modified using the polar thiol, 2-mercaptoethanesulfonic acid (2-MESNA). Similar modifications had been previously used to improve solubility and bioavailability of antibiotics. The resulting analogue was structurally characterized (NMR and mass spectrometry) and showed antimicrobial activity against Bacillus subtilis and Staphylococcus aureus.
16

Investigations into Streptomyces azureus Thiostrepton-resistance rRNA Methyltransferase and its Cognate Antibiotic

Hang, Pei Chun January 2008 (has links)
Thiostrepton (TS: TS; C72H85N19O18S5) is a thiazoline antibiotic that is effective against Gram-positive bacteria and the malarial parasite, Plasmodium falciparum. Tight binding of TS to the bacterial L11-23S ribosomal RNA (rRNA) complex of the large 50S ribosomal unit inhibits protein biosynthesis. The TS producing organism, Streptomyces azureus, biosynthesizes thiostrepton-resistance methyltransferase (TSR), an enzyme that uses S-adenosyl-L-methionine (AdoMet) as a methyl donor, to modify the TS target site. Methylation of A1067 (Escherichia coli ribosome numbering) by TSR circumvents TS binding. The S. azureus tsr gene was overexpressed in E. coli and the protein purified for biochemical characterization. Although the recombinant protein was produced in a soluble form, its tendency to aggregate made handling a challenge during the initial stages of establishing a purification protocol. Different purification conditions were screened to generate an isolation protocol that yields milligram quantities of protein with little aggregation and sufficient purity for crystallographic studies. Enzymological characterization of TSR was carried out using an assay to monitor AdoMet-dependent ([methyl-3H]-AdoMet) methylation of the rRNA substrate by liquid scintillation counting. During the optimization of assay, it was found that, although this method is frequently employed, it is very time and labour intensive. A scintillation proximity assay was investigated to evaluate whether it could be a method for collecting kinetic data, and was found that further optimization is required. Comparative sequence analysis of TSR has shown it to be a member of the novel Class IV SpoUT family of AdoMet-dependent MTases. Members of this class possess a non-canonical AdoMet binding site containing a deep trefoil knot. Selected SpoUT family proteins were used as templates to develop a TSR homology model for monomeric and dimeric forms. Validation of the homology models was performed with structural validation servers and the model was then used as the basis of ongoing mutagenesis experiments. The X-ray crystal structure of TSR bound with AdoMet (2.45 Å) was elucidated by our collaborators, Drs. Mark Dunstan and Graeme Conn (University of Manchester). This structure confirms TSR MTase’s membership in the SpoUT MTase family with a deep trefoil knot in the catalytic domain. The AdoMet bound in the crystal structure is in an extended conformation not previously observed in SpoUT MTases. RNA docking simulations revealed some features that may be relevant to binding and recognition of TSR to the L11 binding domain of the RNA substrate. Two structure-activity studies were conducted to investigate the TS-rRNA interaction and TS solubility. Computational analyses of TS conformations, molecular orbitals and dynamics provided insight into the possible modes of TS binding to rRNA. Single-site modification of TS was attempted, targeting the dehydroalanine and dehydrobutyrine residues of the antibiotic. These moieties were modified using the polar thiol, 2-mercaptoethanesulfonic acid (2-MESNA). Similar modifications had been previously used to improve solubility and bioavailability of antibiotics. The resulting analogue was structurally characterized (NMR and mass spectrometry) and showed antimicrobial activity against Bacillus subtilis and Staphylococcus aureus.
17

Investigations of the Natural Product Antibiotic Thiostrepton from Streptomyces azureus and Associated Mechanisms of Resistance

Myers, Cullen Lucan January 2013 (has links)
The persistence and propagation of bacterial antibiotic resistance presents significant challenges to the treatment of drug resistant bacteria with current antimicrobial chemotherapies, while a dearth in replacements for these drugs persists. The thiopeptide family of antibiotics may represent a potential source for new drugs and thiostrepton, the prototypical member of this antibiotic class, is the primary subject under study in this thesis. Using a facile semi-synthetic approach novel, regioselectively-modified thiostrepton derivatives with improved aqueous solubility were prepared. In vivo assessments found these derivatives to retain significant antibacterial ability which was determined by cell free assays to be due to the inhibition of protein synthesis. Moreover, structure-function studies for these derivatives highlighted structural elements of the thiostrepton molecule that are important for antibacterial activity. Organisms that produce thiostrepton become insensitive to the antibiotic by producing a resistance enzyme that transfers a methyl group from the co-factor S-adenosyl-L-methionine (AdoMet) to an adenosine residue at the thiostrepton binding site on 23S rRNA, thus preventing binding of the antibiotic. Extensive site-directed mutagenesis was performed on this enzyme to generate point mutations at key active site residues. Ensuing biochemical assays and co-factor binding studies on these variants identified amino acid residues in the active site that are essential to the formation of the AdoMet binding pocket and provided direct evidence for the involvement of an active site arginine in the catalytic mechanism of the enzyme. Certain bacteria that produce neither thiostrepton nor the resistance methyltransferase express the thiostrepton binding proteins TIP-AL and TIP-AS, that irreversibly bind to the antibiotic, thereby conferring resistance by sequestration. Here, it was found that the point mutation of the previously identified reactive amino acid in TIP-AS did not affect covalent binding to the antibiotic, which was immediately suggestive of a specific, high affinity non-covalent interaction. This was confirmed in binding studies using chemically synthesized thiostrepton derivatives. These studies further revealed structural features from thiostrepton important in this non-covalent interaction. Together, these results indicate that thiostrepton binding by TIP-AS begins with a specific non-covalent interaction, which is necessary to properly orient the thiostrepton molecule for covalent binding to the protein. Finally, the synthesis of a novel AdoMet analogue is reported. The methyl group of AdoMet was successfully replaced with a trifluoromethyl ketone moiety, however, the hydrated form (germinal diol) of this compound was found to predominate in solution. Nevertheless, the transfer of this trifluoroketone/ trifluoropropane diol group was demonstrated with the thiopurine methyltransferase.
18

Analise da expressão de genes envolvidos na reciclagem de grupos metil e do grau de metilesterificação de homogalacturonano na parede celular de cacau (Theobroma cacao L.) durante a doença vassoura-de-bruxa / Evaluation of methyl recycling-related genes expression and homogalacturonan methylesterification degree in cacao (Theobroma cacao L.) cell wall during witches' broom disease

Teixeira, Gleidson Silva, 1984- 13 August 2018 (has links)
Orientadores: Gonçalo Amarante Guimarães Pereira, Maria Carolina Scatolin do Rio / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-13T07:03:28Z (GMT). No. of bitstreams: 1 Teixeira_GleidsonSilva_M.pdf: 21908086 bytes, checksum: 84eb6f9c294915ecdd74ee2e9d23a152 (MD5) Previous issue date: 2009 / Resumo: A Vassoura-de-bruxa é uma das principais doenças que acometem o cacaueiro (Theobroma cacao L.). Ela é causada pelo fungo hemibiotrófico Moniliophthora perniciosa. Durante a fase biotrófica, o patógeno coloniza o espaço intercelular e estimula a formação de ramos hipertróficos/ hiperplásicos denominados vassoura verde. No estágio avançado da doença, o fungo passa a colonizar também o interior das células e observa-se a morte do tecido originando a vassoura seca. Homogalacturonano (HG) é um domínio estrutural péctico que constitui a matriz da parede celular primária e define suas propriedades funcionais e estruturais. Durante sua síntese, HG é altamente metilesterificado pela ação de pectinas metiltransferases (PMT) que utilizam S-adenosil-L-metionina (SAM) como fonte de grupos metil. Após ser depositado na parede celular, o padrão de metilesterificações de HG é modelado por pectina metilesterases (PME). Alterações no padrão de metilesterificação de HG são relacionadas à má formação de tecidos, complicações durante o desenvolvimento vegetal e à resistência contra a degradação da parede celular por enzimas microbianas. Neste trabalho, a expressão tecido-específica de genes envolvidos nas reações de síntese de SAM e o grau de metilesterificação do HG foram analisadas em plântulas de T. cacao sadias e infectadas. ESTs (expressed sequence tags) de T. cacao foram utilizadas como molde para a síntese de sondas de RNA específicas para os genes: glicosiltransferase, pectina metiltransferase, pectina metilesterase, S-adenosil-Lhomocisteína hidrolase, adenosina quinase, S-adenosil-L-metionina sintetase (SAMS). Além disso, os anticorpos monoclonais JIM5 e JIM7 foram utilizados na imunolocalização de epítopos de HG com menor ou maior grau de metilesterificação. A detecção de transcritos de SAMS e PMT indicou que esses são diferentemente expressos em plântulas sadias e infectadas. Nas plântulas sadias, o sinal para o gene SAMS foi mais intenso nas amostras coletadas com 14 dias após a inoculação (DAI), comparado com as coletadas 42 DAI. Nas amostras infectadas o sinal não variou, entretanto, foi menos intenso comparado com o de plântulas sadias. A marcação de PMT foi evidente no ápice de plântulas sadias coletadas 42 DAI e ausente nas coletadas com 14 DAI. Interessantemente, a ocorrência foi inversa em plântulas infectadas. Epítopos de HG altamente metilesterificados foram detectados por JIM7 em ambas as amostras sadias e infectadas. Entretanto, com 42 DAI, a ligação de JIM7 foi detectada apenas em plântulas sadias, enquanto resíduos de HG pouco metilesterificados, reconhecidos por JIM5, foram observados nas amostras infectadas. Juntos, os resultados sugerem que 1) com 42 DAI, SAM disponível estaria sendo preferencialmente utilizado como precursor de outros compostos e não para a metilesterificação de pectinas e; 2) a alteração do grau de metilesterificação do HG em plantas infectadas pode ser resultado da menor disponibilidade de SAM, da menor expressão do gene que codifica a enzima PMT e/ou da atividade de PMEs, favorecendo assim, a degradação da parede celular por enzimas do fungo em um período onde a degradação da parede é essencial para progressão da doença. / Abstract: The witches' broom disease is one of the major diseases affecting the cocoa (Theobroma cacao L.). It is caused by the hemibiotrophic Moniliophthora perniciosa fungus. During its biotrophic phase, the pathogen colonizes the intercellular space and stimulates the formation of hypertrophic/hyperplasic branches called green broom. In the advanced stage of the disease, the fungus starts also to colonize the interior of the cells and it is noted the death of tissue originating the dry broom. Homogalacturonan (HG) is a pectic structural domain that constitutes the primary cell wall matrix and defines its functional and structural proprieties. During its synthesis, HG is highly methylesterified by the action of pectin methyltransferases (PMT) which uses S-adenosyl-L-methionine (SAM) as a source of methyl groups. After being deposited in the cell wall, the pattern of HG methylesterifications is modeled by pectin methylesterases (PME). Changes in the pattern of HG methylesterifications are related to poor tissue formation, complications during plant development and resistance to cell wall degradation by microbial enzymes. In this study, the tissue-specific expression of genes involved in the reaction of synthesis of SAM and the degree of HG methylesterification were analyzed in seedlings of healthy and infected T. cacao. ESTs (expressed sequence tags) of T. cacao were used as a template for the synthesis of specific RNA probes for the genes: glycoyltransferase, pectin methyltransferase, pectin methylesterase, S-adenosyl-L-homocysteine hydrolase, adenosine kinase and S-adenosyl-L-methionine synthetase (SAMS). Furthermore, the monoclonal antibodies JIM5 and JIM7 were used in the immunolocalization of HG epitopes with lesser or grater degrees of methylesterification. The detection of transcripts of SAMS and PMT indicated that these are expressed differently in healthy and infected seedlings. In healthy seedlings, the signal of the SAMS gene was more intense than in samples collected 14 days after inoculation (DAI), compared to those collected 42 DAI. In the infected samples the signal did not change, however, it was less intense compared to healthy seedlings. The PMT staining was evident in the shoot apex of the healthy seedlings collected 42 DAI and missing in the ones collected 14 DAI. Interestingly, the occurrence was the inverse in infected seedlings. Highly methylesterified HG epitopes were detected by JIM7 in both healthy and infected samples. However, with 42 DAI, the JIM7 binding was detected only in healthy seedlings, while residues of less methylesterified HG, recognized by JIM5, were observed in the infected samples. Taken together, the results suggest that: 1) with 42 DAI, available SAM would be primarily used as a precursor to other compounds and not to methylesterification of pectins and; 2) the changes in the level of HG methylesterification in infected plants may be the result of the lower availability of SAM, lower expression of PMT and/or the activity of PMEs, thereby favoring the degradation of the cell wall by the fungus enzymes in a time where the degradation of the wall is essential to the progression of the disease. / Mestrado / Genetica de Microorganismos / Mestre em Genética e Biologia Molecular
19

Methanocaldococcus jannaschii and the Recycling of S-adenosyl-L-methionine

Miller, Danielle Virginia 25 April 2017 (has links)
S-Adenosyl-L-methionine (SAM) is an essential metabolite for all domains of life. SAM- dependent reactions result in three major metabolites: S-adenosyl-L-homocysteine (SAH), methylthioadenosine (MTA), and 5'-deoxyadenosine (5'-dA). Each of these has been demonstrated to be feedback inhibitors of SAM dependent enzymes. Thus, each metabolite has a pathway to prevent inhibition through the salvage of nucleoside and ribose moieties. However, these salvage pathways are not universally conserved. In the anaerobic archaeal organism Methanocaldococcus jannaschii, the salvage of SAH, MTA, and 5'-dA, proceeds first via deamination to S-inosylhomocysteine (SIH), methylthioinosine (MTI), and 5'-deoxyinosine (5'-dI). The annotated SAH hydrolase from M. jannaschii is specific for SIH and the hydrolyzed product homocysteine is then methylated to methionine. The salvage of MTA is known to proceed through the methionine salvage pathway, however, an anaerobic route for the salvage of MTA is still mostly unknown. Only two enzymes from the methionine salvage pathway are annotated in M. jannaschii's proteome, a methylthioinosine phosphorylase (MTIP) and methylthioribose 1-phosphate isomerase (MTRI). These enzymes were shown to produce methylthioribulose 1-phosphate from MTI. Unfortunately, how MTI is converted to either 2-keto-(4-methylthio)butyrate or methionine remains unknown. The two enzymes involved in the salvage of MTI have also been demonstrated to be involved in the salvage of 5'-dI. Interestingly, there is little information on how 5'-dA or 5'-dI is recycled and it is proposed here to be the source of deoxysugars for the production methylglyoxal, a precursor for aromatic amino acids. MTIP and MTRI were demonstrated to produce 5-deoxyribulose 1-phosphate from 5'-dI. Additionally, two enzymes annotated as part of the pentose phosphate pathway, ribulose 5-phosphate 3-epimerase and transketolase, were able to convert 5-deoxyribulose 1-phosphate to lactaldehyde. Lactaldehyde was then reduced to methylglyoxal by an essential enzyme in methanogenesis, N5, N10-methylenetetahydromethanopterin reductase with NADPH. These results further demonstrate a novel route for the biosynthesis of methylglyoxal. Lastly, hypoxanthine produced from phosphorolysis of inosine, MTI, and 5'-dI was demonstrated to be reincorporated through the hypoxanthine/guanine phosphoribosyltransferase (Hpt) to IMP. Together these reactions represent novel pathways for the salvage of the SAM nucleoside and ribose moieties in M. jannaschii. / Ph. D.
20

Funkce proteinu LmbW v biosyntéze antibiotika linkomycinu / Function of LmbW protein in biosynthesis of antibiotic lincomycin

Steiningerová, Lucie January 2015 (has links)
4-Alkyl-L-proline derivatives (APD) are specialized precursors involved in the biosynthesis of at least three groups of different natural compounds: some pyrrolo-1,4-benzodiazepines with antitumor activity, bacterial hormone hormaomycin and clinically used lincosamide antibiotic lincomycin. These compounds share a biosynthetic pathway encoded by 5 or 6 homologous genes present in the biosynthetic gene clusters of the producing organisms. Similarities in biosynthesis and differences between APD structures of these compounds could be used to prepare a hybrid producing strain of biologically more effective lincomycin derivative. Unusual amino acid 4-propyl-L-proline (PPL) is the APD precursor of lincomycin. The originally proposed scheme of the PPL pathway does not comply with our current knowledge. Therefore, it was necessary to revise this scheme according to new results. The first two steps of the PPL pathway are functionally proved. Probing the next step was the main aim of this work. The protein LmbW was overproduced and its methyltransferase activity was confirmed in vitro. LmbW is able to directly methylate intermediate of second step of the pathway while the originally scheme proposed methylation at a later stage of biosynthesis. LmbW is also able to attach a longer alkyl chain to its substrate. This...

Page generated in 0.0754 seconds