• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 305
  • 70
  • 44
  • 27
  • 27
  • 18
  • 16
  • 14
  • 10
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 664
  • 257
  • 139
  • 117
  • 61
  • 59
  • 49
  • 45
  • 45
  • 44
  • 43
  • 42
  • 41
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

PLC Lab Station : An Implementation of External Monitoring and Control Using OPC

Andersson, Karl January 2014 (has links)
The PLC is frequently used when implementing automated control, which is animportant part of many modern industries. This thesis has been carried out incollaboration with ÅF Consult in Sundsvall, who were in need of a PLC labstation for educational purposes. The overall aim of this thesis has been todesign and construct such a lab station and also to implement a solution forexternal monitoring and control possibilities. The methodology of this projecthas included a literary study, followed by the implementation of the actualsolutions and finally an evaluation of the project. The finished lab stationincludes a conveyor belt and a robotic arm controlled using two PLCs. Theconveyor belt is designed to be able to store, transport, differentiate and sortsmall cubes of various materials, and the robotic arm is designed as a pick-andplacedevice that can move the cubes between different positions on the labstation. The monitoring and control solution is set up using an OPC clientserverconnection on a PC and it provides a graphical user interface where thelab station can be monitored and controlled externally. The lab station offersdiverse functionality, but due to some inconsistency in the included equipmentit is not entirely reliable. The external monitoring and control solution alsoprovides good functionality, but the time frame of the project resulted in a lessextensive implementation than originally intended. The overall solutions are,however, considered to offer a functional and proper platform for educationalpurposes.
102

Essays on Development and Behavior Economics: An Impact Evaluation of the “Bolsa Família” - Conditional Cash Transfer on Education and the Effect of Leadership Identity on Group Cooperation and Elite Capture

Schaffland, Elke 18 June 2013 (has links)
No description available.
103

Towards a portable and inexpensive lab-on-a-chip device for point of care applications

Olanrewaju, Ayokunle Oluwafemi 11 1900 (has links)
Ongoing work in the laboratory of Professor Chris Backhouse is aimed at developing a portable and inexpensive lab on a chip instrument. A system capable of molecular biology protocols including sample preparation (SP), polymerase chain reaction (PCR), and melting curve analysis (MCA) would meet the requirements for point of care genetic analysis. The SP, PCR, and MCA modules were designed and tested on a standalone basis and then integrated for analysis of raw clinical samples. An automated XY stage was developed for magnetic bead-based DNA purification. In addition, a LED/CCD-based optical detection module was employed for real time PCR and MCA. Data analysis algorithms and protocols were implemented to remove noise and interpret data. This work culminated in proof of principle on-chip SP-PCR-MCA to detect ß2m DNA from human buccal cells in a modular and inexpensive system. / Biomedical Engineering
104

A Low-energy, Low-cost Field Deployable Sampler For Microbial DNA Profiling

January 2011 (has links)
abstract: Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology. / Dissertation/Thesis / Additional Paper / M.S. Civil and Environmental Engineering 2011
105

Remote Laboratory Web-Application Design and Development

Ghassemi Rezaei, Amin, Fattahi, Saeid January 2015 (has links)
The basis of this thesis is a deep featured analysis and a workflow of Web Application Development, attaining to a Remote Laboratory Platform based on .Net Web Application. This thesis has been written for the Bachelor degree in Electrical Engineering held at Blekinge Tenaska Högskola Karlskrona, Sweden.While the main goal is developing a Remote Laboratory access platform. Main objective parameter considerations are, Web Applications interface Design and its programming Methods. Although a feasible deployment brings other technical concerns. Such as Web Server Structures, Database Systems and Security Implementations. All mentioned aspects have been deeply researched and their statistical analysis are based upon world’s leading technology research companies.The thesis conclusion is a neat guide for developing a .Net Web Application in comparison to its rivals and the prototype of the Remote Lab Web Application itself.Targets of the project are Universities, companies and any other organization which are enthusiastic to implement remote access to their laboratories over internet, alongside to any individual whom interested in web application development as the project provides a coherent guide.
106

Protein Dielectrophoresis Using Insulator-based Microfluidic Platforms

January 2014 (has links)
abstract: Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While microfluidic devices require only pL-nL sample volumes, they offer several advantages such as speed, efficiency, and high throughput. This work elucidates the capability to manipulate proteins in a rapid and reliable manner with a novel migration technique, namely dielectrophoresis (DEP). Since protein analysis can often be achieved through a combination of orthogonal techniques, adding DEP as a gradient technique to the portfolio of protein manipulation methods can extend and improve combinatorial approaches. To this aim, microfluidic devices tailored with integrated insulating obstacles were fabricated to create inhomogeneous electric fields evoking insulator-based DEP (iDEP). A main focus of this work was the development of pre-concentration devices where topological micropost arrays are fabricated using standard photo- and soft lithographic techniques. With these devices, positive DEP-driven streaming of proteins was demonstrated for the first time using immunoglobulin G (IgG) and bovine serum albumin. Experimentally observed iDEP concentrations of both proteins were in excellent agreement with positive DEP concentration profiles obtained by numerical simulations. Moreover, the micropost iDEP devices were improved by introducing nano-constrictions with focused ion beam milling with which numerical simulations suggested enhancement of the DEP effect, leading to a 12-fold increase in concentration of IgG. Additionally, concentration of β-galactosidase was observed, which seems to occur due to an interplay of negative DEP, electroosmosis, electrokinesis, diffusion, and ion concentration polarization. A detailed study was performed to investigate factors influencing protein DEP under DC conditions, including electroosmosis, electrophoresis, and Joule heating. Specifically, temperature rise within the iDEP device due to Joule heating was measured experimentally with spatial and temporal resolution by employing the thermosensitive dye Rhodamine B. Unlike DNA and cells, protein DEP behavior is not well understood to date. Therefore, this detailed study of protein DEP provides novel information to eventually optimize this protein migration method for pre-concentration, separation, and fractionation. / Dissertation/Thesis / Ph.D. Chemistry 2014
107

Wicking i en textil kemisk krets : En studie om vätskestyrning i en vävs varp- och väftgarner för applicering i en biosensor

Eklöf, Ellen, Fransson, Johanna January 2017 (has links)
De senaste decennierna har en miniatyriseringstrend inom ingenjörsvetenskaperna blivit allt större. Komplexa maskiner eller processer skalas ner till en allt mindre skala. Det kan vara motorer som inte är större än 500 μm eller kemiska analyser som vanligtvis görs på en större laboratorieutrustning som nu går att utföra på en yta på ca 2x4 cm. En sådan utrustning som kan utföra kemiska analyser kallas ofta för ”Lab-on-a-Chip” (LoC) och innehåller kemiska kretsar som hanterar mikroflöden av analysvätskor. En del av dagens forskning för att ta fram nya LoC handlar om att möta ett behov av portabel, billig och snabb analysutrustning i utvecklingsländer. Dock finns ett problem med att få ut produkter på marknaden. De flesta LoC som presenteras i forskningsrapporter idag är tillverkade av polydimetylsiloxan (PDMS). Det är en elastomer som lämpar sig väl för småskalig prototypframställning, men är svår att producera i stor skala, dessutom krävs ofta extern utrustning för att vätskeflöde skall uppstå. Det finns även LoC i papper, vilkas porösa struktur möjliggör för spontan vätsketransport, wicking, utan extern utrustning. Dessa är billiga och har nått större framgång. Exempelvis är vanliga graviditetstest som går att köpa på apoteket ofta LoC i papper. Textiliers fukt- och vätskehantering är relevant för komfort, och för många beredningsprocesser. Exempelvis är wicking ett välstuderat område som det finns djup kunskap om i den textila sektorn. Denna kunskap kan utnyttjas för att skapa ett textilt LoC. Att använda textila tekniker innebär möjligheter att styra vätskeflödet med hjälp av garn med och utan wickingförmåga. Denna studie undersöker hur en vävs naturliga X-Y-system av varp- och väftgarner kan utnyttjas för att skapa en kontrollerad vätskestyrning, en textil kemisk krets. Arbetet har utgått från frågan om hur en väv kan konstrueras för att leda en vätska från ett varpgarn till ett väftgarn utan läckage i oönskad del av väven. Två olika garner valdes: ett monofilament av polyeten för de områden där vätskeledning ej var önskvärd och ett multifilament av Coolmax® polyester med god wickingförmåga där vätskan vara avsedd att transporteras. Tre parametrar testades; bindningen i de delar av väven som var avsedd för vätsketransport (önskad väg); bindningen där vätskan skulle övergå från ett varpgarn till ett väftgarn (vägskälet); och antalet wickande trådar (trådigheten). Åtta olika kombinationer avseende dessa parametrar testade. Samtliga parametrar hade signifikant inverkan på läckaget. Den konstruktion med minst läckage in i oönskad väg var den med bindning över två trådar i önskad väg, flotteringar i vägskälet och var tvåtrådig. Den framtagna vävens möjlighet att användas i en biosensor undersöktes genom ett försök att konstruera en elektrokemisk glukosmätare. Som elektroder valdes en silverbelagd polyamid. Vid preparering av elektroderna skedde en oväntad reaktion mellan det silverbelagda garnet och en av de ingående kemikalierna, prussian blue. Därför kunde ingen detektion av glukos ske. Det noterades även att den textila kemiska kretsens wickingförmåga försämrades då den utsattes för våta prepareringsprocesserna av elektroderna. Från experimentet med att konstruera en textil glukosmätare drogs slutsatsen att preparering av elektroderna bör ske innan invävning i den textila kemiska kretsen.
108

Towards novel lab-on-a-chip electrochemical detection of infectious disease biomarkers

Valera, Amy Elizabeth January 2018 (has links)
Thesis advisor: Thomas C. Chiles / Rapid diagnosis of infectious disease at the site of the patient is critical for preventing the escalation of an outbreak into an epidemic. This is particularly true for cholera, a disease known to spread swiftly within resource-limited populations. A device suited to point-of- care (POC) diagnosis of cholera must not only demonstrate laboratory levels of sensitivity and specificity, but it must do so in a highly portable, low-cost manner, with a simplistic readout. Here, we report novel proof-of-concept lab-on-a-chip (LOC) electrochemical immunosensors for the detection of cholera toxin subunit B (CTX), based on two nanostructured architectures: the gold dendritic array, and the extended core coax (ECC). The dendritic array has an ~18x greater surface area than a planar gold counterpart, per electrochemical measurements, allowing for a higher level of diagnostic sensitivity. An electrochemical enzyme-linked immunosorbant assay (ELISA) for CTX performed via differential pulse voltammetry (DPV) on the dendritic sensor demonstrated a limit-of detection of 1 ng/mL, per a signal-to-noise ratio of 2.6, which was more sensitive than a simple planar gold electrode (100 ng/mL). This sensitivity also matches a currently available diagnostic standard, the optical ELISA, but on a miniaturized platform with simple electrical readout. The ECC was optimized and explored, undergoing several changes in design to facilitate sensitive LOC electrochemical detection. The ECC matched the off-chip sensitivity towards CTX demonstrated by a previous non-extended core coaxial iteration, which was comparable to a standard optical ELISA. In contrast to the previous coaxial architecture, the ECC is amenable to functionalization of the gold core, allowing for LOC detection. ECCs were functionalized using a thiolated protein G, and CTX was detected via an electrochemical ELISA. While this work is ongoing, the ECC shows promise as a platform for LOC electrochemical ELISA. The ability to potentially meet POC demands makes biofunctionalized gold dendrites and ECCs promising architectures for further development as LOC sensors for the detection of infectious disease biomarkers. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
109

Návrh laboratorních úloh pro simulační prostředí OPNET IT Guru / Design of practical tutorials for the OPNET IT Guru simulation environment

Matzová, Martina January 2012 (has links)
This thesis deals with the design of three labs in the simulation environment OPNET IT Guru. The first lab demonstrates the differences between the RM OSI transport layer protocols - TCP and UDP. The second lab discusses the role of ICMP protocol and its most famous feature - PING. The third lab is devoted to Application Characterization Environment (ACE) module, which is included in OPNET IT Guru. Theoretical background is provided for all of the mentioned topics. All designed labs can be used to teach at the Faculty of Electrical Engineering and Communication of BUT on subjects dealing with network technologies.
110

Micro-Biosensor Devices for Biochemical Analysis Applications

Zhang, Han 01 May 2020 (has links)
A biosensor is an analytical device integrating a biological element and a physicochemical transducer that convert a biological response into a measurable signal. The advantages of biosensors include low cost, small size, quick, sensitivity and selectivity greater than the conventional instruments. Biosensors have a wide range of applications ranging from clinical diagnostics through to environmental monitoring, agriculture industry, et al. The different types of biosensors are classified based on the sensor device as well as the biological material. Biosensors can be broadly classified into (piezoelectric, etc.), electrochemical biosensors (potentiometric, amperometric, etc.), and optical types of biosensors (fiber optics, etc.). Here, we introduce a novel microfluidics-integrated biosensor platform system that can be flexibly adapted to form individual biosensors for different applications. In this dissertation, we present five examples of different emerging areas with this biosensor system including anti-cancer drug screening, glucose monitoring, heavy metal elements measurement, obesity healthcare, and waterborne pathogen DNA detection. These micro-biosensors have great potential to be further developed to emerging portable sensing devices especially for the uses in the developing and undeveloped world. At the last chapter, Raman spectroscopy applied to assess gestational status and the potential for pregnancy complications is presented and discussed. This technique could significantly benefit animal reproduction.

Page generated in 0.025 seconds